HTML
Document Tags

There are four tags every HTML document should have. These tags define the what type of document it is, and the major sections. These tags are <HTML>, <HEAD>, <TITLE>, and <BODY ...>.
	Tag Description
	Code Example

	<HTML> tag:
Put <HTML> at the beginning and end of your document. Everything in the document goes inside <HTML>, except that <!DOCTYPE ...>
<HEAD> tag:

Within <HTML>, the document has two sections to it: <HEAD> and <BODY ...>. <HEAD> is like the cover page of the document. the <HEAD> section contains information about the document. This information is communicated through the <TITLE> tag (which is required) and the <LINK ...> and <META ...> tags.
<TITLE> tag: <TITLE> states the title of the document. <TITLE> always goes in the <HEAD> section and browsers will display the title at the top of the window.

	<HTML>

<HEAD>
<TITLE>My Home Page</TITLE>

</HEAD>
<BODY>

<H1>My Home Page</H1>

Hello how are you!

</BODY>

</HTML>

	Design of complicated document which uses <LINK ...> and <META ...> might look like this
<META ...>: which always goes in the <HEAD> section, is used to describe the web page. Metainformation is information about information. <META ...> is information about the information on the web page. Basically we use meta for: Automatic Refreshing and Forwarding web document, Search Engines

META for Creating HTTP Headers.
<LINK ...> tag: use it following properites
· REL: relationship to this page

· REV: reverse relationship to this page

· HREF: URL of related document
· TITLE: suggested title

· MEDIA: What media type the link applies to

· TYPE: MIME type of linked resource
	<HTML>

<HEAD>
<TITLE>My Home Page</TITLE>

<LINK REL=HOME HREF="/tags/index.html">

<META NAME=AUTHOR CONTENT="romkant">

</HEAD>
<BODY>

<H1>My Home Page</H1>

Hi There!

</BODY>

</HTML>

	
	

<BODY ...> is one of the two major sections that goes inside <HTML> .

<BODY ...> is the section that holds everything that is actually displayed. All the text, headers, tables, etc are in the <BODY ...> section. Inside the body tag using folowing attributes.
:
	Body attribut
	code

	BGCOLOR = color expression
BGCOLOR sets the background color of the web page. For example, to set the background color of a page to a light-yellow, use
	<BODY BGCOLOR="#FFFFCC">

	BACKGROUND = "image URL"
 BACKGROUND sets a picture to use as the background for a page.
	<BODY BACKGROUND="paper.gif">

	TEXT = color expression
ALINK = color expression
LINK = color expression
VLINK = color expression
These attributes set the color of different types of text on the page:
TEXT:
regular text
LINK:
color of a link before it has been followed
ALINK: color of a link while it is being followed (an Active LINK)
VLINK
color of a link after it has been followed (a Visited LINK)

	<BODY

 TEXT="#FFFFFF"

 LINK="#FFFF00"

 VLINK="#33FF33"

 ALINK="#FF0000"

 BGCOLOR="#000000">

	BGPROPERTIES = FIXED

BGPROPERTIES creates a "watermark" on the page, a background image which does not scroll with the rest of the page.

	<BODY BACKGROUND="../image/bg.gif" BGPROPERTIES=FIXED>

	TOPMARGIN
LEFTMARGIN = integer
MARGINHEIGHT
MARGINWIDTH
TOPMARGIN and LEFTMARGIN establish margins in web browser.
	<BODY TOPMARGIN=0 LEFTMARGIN=0 MARGINHEIGHT=0 MARGINWIDTH=0>

Structuring web page
Lines and Paragraphs
<P ...> indicates the start of a new paragraph. This is usually rendered with two carriage returns, producing a single blank line in between the two paragraphs:
	p and its attribute
	code example
	result

	
	This is the first paragraph.

<P>And this is the second paragraph.

	This is the first paragraph.

And this is the second paragraph.

	ALIGN = LEFT | CENTER | RIGHT | JUSTIFY

ALIGN indicates the alignment of the paragraph.
	<P ALIGN=LEFT>

This is aligned left. This is the default.

</P>

<P ALIGN=CENTER>

This is aligned center.

</P>

<P ALIGN=RIGHT>

This is aligned right.

</P>

	This is aligned left. This is the default.

This is aligned center.

This is aligned right

<BR ...>
<BR ...> inserts a single carriage return. Whereas <P ...> indicates the start of a new paragraph, <BR ...> only implies a carriage return within the same paragraph. <BR ...> is usually rendered with a single carriage return.

<BR ...>
CLEAR = LEFT | RIGHT | ALL | BOTH
CLEAR says that in addition to inserting a line break, if there is a picture or other object to the right or left, go past that too. For example, this code says that the picture should be aligned on the left side of the page. Then there is some text, then LEFT. The text following that is past the picture:

Come on

down to the Halloween party! You'll have a great ol' time.<BR CLEAR=LEFT>

8:00pm to midnight. Wear a costume or come as your own scary self!

<CENTER ...>
<CENTER ...> indicates a section that is centered. <CENTER ...> is exactly equivalent to <DIV ALIGN=CENTER>. <CENTER ...> is being phased out. Use <DIV ALIGN=CENTER> instead.

<CENTER>
Hi There! Let's talk about stuff!

</CENTER>
gives us

Hi There! Let's talk about stuff!

which is the same as

<DIV ALIGN=CENTER>
Hi There! Let's talk about stuff!

</DIV>
which gives us

<HR ...>
<HR ...> draws a horizontal line (a "horizontal rule") across the page. <HR ...> has no end tag and requires no attributes:

<HR>

<HR ...> is usually indicates a division in the page. Stuff before the rule is in a different "section" from the stuff after. For that reason many designers consider <HR ...> a logical tag, not a layout tag.
HR attribute

	HR attributes
	Code
	Result

	NOSHADE: NOSHADE indicates that the rule should be presented as flat instead of three dimensional. Compare this regular horizontal rule
	<hr noshade>

<HR NOSHADE SIZE=10>

	

	SIZE = "height expression"
SIZE indicates the height of the rule. Browsers will generally not render an <HR ...> any bigger than 100
	<HR>

<HR SIZE=1>

<HR SIZE=5>

<HR SIZE=20>

	

	WIDTH = "width expression"

WIDTH sets the horizontal width of the rule. You can express the size in pixels or as a percentage.

	<HR WIDTH="50">

<HR WIDTH="100">

<HR WIDTH="300">

	

	ALIGN = LEFT | RIGHT | CENTER
ALIGN sets the alignment of the rule. ALIGN is only useful if you also use WIDTH
	<HR WIDTH="40%" ALIGN=LEFT>

<HR WIDTH="40%" ALIGN=CENTER>

<HR WIDTH="40%" ALIGN=RIGHT>

	

ALIGN = LEFT | RIGHT | CENTER
ALIGN sets the alignment of the rule. ALIGN is only useful if you also use WIDTH.

<HR WIDTH="40%" ALIGN=LEFT>

<HR WIDTH="40%" ALIGN=CENTER>

<HR WIDTH="40%" ALIGN=RIGHT>

<PRE ...>
<PRE ...> is one the handiest tags in the HTML toolbox. <PRE ...> marks the text as "preformatted" -- all the spaces and carriage returns are rendered exactly as you type them.

<PRE>
 title extension

Raha Producer 8765

Kathy Accountant 8924

Scarlett Security Guard 8273

</PRE>
produces

 title extension

Raha Producer 8765

Kathy Accountant 8924

Scarlett Security Guard 8273

<PRE ...> text is rendered in a fixed width font, meaning that all characters and spaces are the same width.

<BLOCKQUOTE ...>
<BLOCKQUOTE ...> indicates that you are quoting a large section of text. <BLOCKQUOTE ...> is rendered with a paragraph break before and after, and usually (but not always) indented.

<BLOCKQUOTE>
PORTIA

The quality of mercy is not strain'd, it droppeth as the gentle rain

from heaven upon the place beneath: it is twice blest; it blesseth

him that gives and him that takes: tis mightiest in the mightiest:

it becomes the throned monarch better than his crown.

</BLOCKQUOTE>
gives us

PORTIA
The quality of mercy is not strain'd, it droppeth as the gentle rain from heaven upon the place beneath: it is twice blest; it blesseth him that gives and him that takes: tis mightiest in the mightiest: it becomes the throned monarch better than his crown.

Fonts

Lists

<OL ...>
<OL ...> creates an ordered list. "Ordered" means that the order of the items in the list is important. To show this, browsers automatically number the list. Note in this example that the HTML does not give any numbers: the numbers are automatically made by the browser (which makes it easy on you the author).

	this code
	produces this

	
Take 495 north

Cross the 14th Street Bridge

Take the Maine Avenue exit

Turn left at the first light

	1. Take 495 north

2. Cross the 14th Street Bridge

3. Take the Maine Avenue exit

4. Turn left at the first light

You can create lists within lists using <OL ...>. Each nested list starts counting at 1 (or at the value of START).

Attribute for <OL ...>
TYPE = 1 | A | a | I | i
TYPE sets the type of numbering to use.

	comments
	this code
	produces this

	1 is the default: normal Arabic numerals.
	<OL TYPE=1>

Turn left on Maple Street

Turn right on Clover Court

	1. Turn left on Maple Street

2. Turn right on Clover Court

	A makes the list use capital letters
	<OL TYPE=A>

Turn left on Maple Street

Turn right on Clover Court

	A. Turn left on Maple Street

B. Turn right on Clover Court

	a makes the list use lowercase letters
	<OL TYPE=a>

Turn left on Maple Street

Turn right on Clover Court

	a. Turn left on Maple Street

b. Turn right on Clover Court

	I makes the list use capital Roman Numerals
	<OL TYPE=I>

Turn left on Maple Street

Turn right on Clover Court

	I. Turn left on Maple Street

II. Turn right on Clover Court

	i makes the list use lowercase Roman Numerals
	<OL TYPE=i>

Turn left on Maple Street

Turn right on Clover Court

	i. Turn left on Maple Street

ii. Turn right on Clover Court

TYPE is particularly useful for making outlines.

	this code
	produces this

	<H3>Meeting Agenda</H3>

<OL TYPE=A>

Budget

 <OL TYPE=a>

 Equipment

 Salaries

Convention Plans

 <OL TYPE=a>

 Accomodations

 Schedule

	Meeting Agenda

A. Budget

a. Equipment

b. Salaries

B. Convention Plans

a. Accomodations

b. Schedule

Attribute for <OL ...>
START = integer
START tells the browser what number to start counting at. Generally you want to start at 1, but occasionally you may need to start at a higher number.

	this code
	produces this

	We now pick up where we left off

yesterday with the chilled geletin:

<OL START=5>

Place geletin mold over plate

Tap gently with a spoon

Lift mold off of geletin

	

<UL ...>
<UL ...> creates an unordered list. The unordered part means that the items in the list are not in any particular order.

	this code
	produces this

	Grocery List:

potatoes

spinach

lollipops

	Grocery List:

· potatoes

· spinach

· lollipops

<UL ...>s can be nested to produce lists within lists:

	this code
	produces this

	
Marketing

 Andy Hodges

 Trey Gregory

Engineering

 Karen Joslin

 Sheila Malone

 Karl Heinz

	· Marketing

· Andy Hodges

· Trey Gregory

· Engineering

· Karen Joslin

· Sheila Malone

· Karl Heinz

Attribute for <UL ...>
TYPE = DISC | CIRCLE | SQUARE
TYPE sets the type of bullet to use in the list. DISC is a solid little circle. CIRCLE is an empty circle, and SQUARE is (you might have guessed) a square.

	this code
	produces this

	<UL TYPE=DISC>

coffee

tea

lemonade

	· coffee

· tea

· lemonade

	<UL TYPE=CIRCLE>

coffee

tea

lemonade

	· coffee

· tea

· lemonade

	<UL TYPE=SQUARE>

coffee

tea

lemonade

	· coffee

· tea

· lemonade

DISC is the default for top-level lists, that is, a list that is not nested in other lists. For lists that are listed inside other lists the default changes from browser to browser. TYPE may be a good way to keep control of the bullets if you find you don't like the choices made by different browsers.

<LI ...>
<LI ...> indicates the start of a new line item within a list. <LI ...> can be used with <OL ...>, <UL ...>, and <DIR ...>

Attribute for <LI ...>
TYPE = DISC | CIRCLE | SQUARE | 1 | A | a | I | i
TYPE is good for confusing your readers by switching numbering or bullet style midstream. When you use TYPE, that line item and all subsequent items use the specified type.

cake

pudding

<LI TYPE=CIRCLE>scones

cobbler

produces

· cake

· pudding

· scones

· cobbler

Attribute for <LI ...>
VALUE = integer
VALUE is another way to confuse your readers. Used in an ordered list, VALUE causes the browsers to skip to the given number and count from there.

	this code
	produces this

	

Start at the beginning

Build your arguments carefully

<LI VALUE=13 >Skip to the middle

Hope everyone understands

	1. Start at the beginning

2. Build your arguments carefully

3. Skip to the middle

4. Hope everyone understands

<DIR ...>
<DIR ...> indicates that the listing is a directory, such as a directory of a web site or of an organization. <DIR ...> works with <LI ...> in the same way <UL ...> does, and is generally rendered the same way.

	this code
	produces this

	Our Organization

<DIR>
Juniper Healy, President, CEO

Charles Davis, VP Advertising

Theotis Connoly, VP Development

Mara Robbins, Chief Financial Officer

</DIR>
	Our Organization

 Juniper Healy, President, CEO

 Charles Davis, VP Advertising

 Theotis Connoly, VP Development

 Mara Robbins, Chief Financial Officer

<MENU ...>
<MENU ...> indicates the start a series of choices. It is usually rendered like <UL ...>.

Here's a comparison:

	this code
	produces this

	<MENU>
Spam

Spam and Eggs

Spam, Spam, Eggs and Spam

</MENU>
	 Spam

 Spam and Eggs

 Spam, Spam, Eggs and Spam

	
Spam

Spam and Eggs

Spam, Spam, Eggs and Spam

	· Spam

· Spam and Eggs

· Spam, Spam, Eggs and Spam

<DL ...>
<DL ...> was originally intended for (and is still very good for) making lists of terms and their definitions.

	this code
	produces this

	<DL>
<DT>flame

<DD>an ugly argument in a newsgroup

<DT>spam

<DD>annoying unrequested email

<DT>troll

<DD>someone who start flames

 by posting stupid things

</DL>
	flame

an ugly argument in a newsgroup

spam

annoying unrequested email

troll

someone who start flames by posting stupid things

<DL ...> is useful for all sorts of lists. Any situation where you want to say "this is a thing, this is stuff about the thing" is a good time to think about using a definition list. For example, a definition list can be used for a performance script:

	this code
	produces this

	<DL>

<DT>Mary

<DD>So what's going on tonight?

<DT>Dawn

<DD>Let's play some music

<DT>Jason

<DD>Cool man, let's jam!

</DL>
	Mary

So what's going on tonight?

Dawn

Let's play some music

Jason

Cool man, let's jam!

Attribute for <DL ...>
COMPACT
COMPACT tells the browser to try to take up less space rendering the definition list. This is usually done by not putting a carriage return after very short terms.

<DL COMPACT>

<DT>Internet Engineering Task Force

 <DD>An organization which establishes technical standards for the Internet

<DT>e

 <DD>Often used as a prefix to indicate the electronic version of something

<DT>spam

 <DD>annoying email and news postings which waste time and bandwidth

</DL>

produces

Internet Engineering Task Force

An organization which establishes technical standards for the Internet

e

Often used as a prefix to indicate the electronic version of something

spam

annoying email and news postings which waste time and bandwidth

The term e and its definition are probably on the same line. However, Internet Engineering Task Force is probably rendered exactly the same way as it is without COMPACT. In practice, COMPACT doesn't usually save much space, and it makes the definition list harder to read.

<DT>
<DT> is used in conjunction with <DL ...> and <DD> to create definition lists. <DT> is usually used as the first part of a <DT>/<DD> combination. So, for example, this code creates three pairs of terms and definitions for the terms.

	this code
	produces this

	<DL>

<DT>flame

<DD>an ugly argument in a newsgroup

<DT>spam

<DD>annoying unrequested email

<DT>troll

<DD>someone who start flames

 by posting stupid things

</DL>
	flame

an ugly argument in a newsgroup

spam

annoying unrequested email

troll

someone who start flames by posting stupid things

<DT> is a container, so you can put a </DT> at the end of the term. However, the end tag is optional and is rarely used.

<DD>
<DD> sets the description part of a term/description pair in a definition list.

	this code
	produces this

	<DL>

<DT>flame

<DD>an ugly argument in a newsgroup

<DT>spam

<DD>annoying unrequested email

<DT>troll

<DD>someone who start flames

 by posting stupid things

</DL>
	flame

an ugly argument in a newsgroup

spam

annoying unrequested email

troll

someone who start flames by posting stupid things

Although it is acceptable to put a </DD> at the end of the element, the end tag is not required and is rarely used.

<A ...>
<A ...> is tag that makes hypertext . <A ...> is the tag you use to make hyperlinks: the text that you can click on in your web browser to go to another web page.

	this code

	My Web Page

Attribute for <A ...>
HREF = "URL": HREF indicates the URL being linked to. HREF makes the anchor into a link. So, for example, this tag creates a link to resumepage.html:

my resume

NAME = "text string"
NAME gives the anchor a name. Other links target the anchor using that name. This allows you to link to specific places within the page.

For example, suppose you have a long page with a section about purchasing. You could create a named anchors in the sub-header for that section like this:

<H2>Purchasing</H2>

Note that the <A ...> tag goes inside the <H2 ...> tags. Unlike an anchor that uses HREF, a named anchor doesn't change the appearance of the text (unless you set styles for that anchor) or indicate in any way that there is anything special about the text. The purpose of the name is that another anchor can link to the named anchor.

To link to a named anchor, add a hash mark to the end of the URL of the page followed by the name. For example, to link to a section named purchasing within the page called anameexample.html we would create a link like this:

Purchasing

If the link is to a named anchor in the same page then you don't need the file name of the page, just the hash mark and the name of the anchor. For example, you could put a set of links at the top of a long page that link to sections within the page. To link to the purchasing section in our example above you would put a link like this:

	this code
	produces this

	Purchasing
	the links at the top of this page

Don't forget the hash mark. That's the most common mistake made in this type of linking and has been a source of frustration for many webmasters. Remember these two rules:

	The named anchor itself doesn't have a hash mark.
	

	A link to the named anchor always has a hash mark.
	

TARGET = "_blank" | "_parent" | "_self" | "_top" | window name
TARGET controls where the new document will be displayed when the user follows a link.

· "_blank"

· "_parent"

· "_self"

· "_top"

Note that each of predefined names starts with an underscore ("_"). They also must be in all lower-case letters.

TARGET = "_blank"
"_blank" opens the new document in a new window.

	this code

	a new window

TARGET = "_parent"
"_parent" is used in the situation where a frameset file is nested inside another frameset file. A link in one of the inner frameset documents which uses "_parent" will load the new document where the inner frameset file had been.
bigframe

If the current document's frameset file does not have any "parent", then "_parent" works exactly like "_top": the new document is loaded in the full window. Note that "_parent" does not work in a frameset which is merely nested inside another framset in the same frameset file.

TARGET = "_self"
"_self" puts the new document in the same window and frame as the current document. "_self" works the same as if you had not used TARGET at all.

	this code

	go to next page

TARGET = "_top"
"_top" loads the linked document in the topmost frame... that is, the new page fills the entire window.

	this code

	top

TARGET = window name
window name is used to put the linked document in a frame or window other than the frame the link is in.

For example, this link

Spanish Rice

TITLE = "text string"
W3C says that TITLE is "an advisory title for the linked resource". The idea is that TITLE gives a description of the linked resource that is more informative than the URL.

onClick = "script command(s)"
.

onClick sets a script to run when the user clicks on the link.

	this code

	My Page

onMouseOver = "script command(s)"
onMouseOut = "script command(s)"
	this code

	<A

 HREF="omoexample.html"

 onMouseOver="alert('my alert box')">my page

This code displays an alert box when the mouse moves out from the link:

	this code

	<A

 HREF="omoexample.html"

 onMouseOut="alert('my alert box')">my page

Loggical tag

<H# ...> indicates a header, a title of a section of the document. For example, to start the section of your page that discusses your hobbies, you might put

<H2>My Hobbies</H2>
There are six header tags:

· H1

· H2

· H3

· H4

· H5

· H6

<H1>Starflower O'Sullivan</H1>
<H2>My Resume</H2>
<H3>Job Experience</H3>
<H4>Chef</H4>
<H4>Nutrionist</H4>
<H2>My Hobbies</H2>
<H3>Macrame</H4>
<H3>Poetry</H4>
<H3>Kung Fu</H4>
Attribute for <H# ...>
ALIGN = LEFT | RIGHT | CENTER | JUSTIFY
ALIGN aligns the header LEFT, CENTER or RIGHT. LEFT is the default.

<H1 ALIGN=LEFT>My Resume</H1>

<H1 ALIGN=CENTER>My Resume</H1>

<H1 ALIGN=RIGHT>My Resume</H1>

Indicates emphasis

	this code
	produces this

	The witness was not even there

at the time.
	The witness was not even there at the time.

Indicates text which should be more forceful than surrounding text.

	this code
	produces this

	I highly recommend Butch for the job.
	I highly recommend Butch for the job.

What's the difference between (emphasis) and ? It's a matter of degree: is like only more so
<INS>,

 indicates that the text has been deleted from the current revision of the document. <INS> indicates that the text has been inserted into the document since the last revision. Both of these tags are currently only supported by MSIE.

	this code
	produces this

	Tell

Chris

<INS>Veron</INS>

to update the Houston account.
	Tell Veron to update the Houston account.

The problem with and <INS> is that they don't degrade properly. Browsers that don't know these tags will display the contents of both of them as normal, giving an incorrect representation of the intended meaning. Don't use these tags unless you are sure your audience's browsers support them.

<CITE>
<CITE> indicates a reference to work, such as a book, report or web site.

Sources:

<CITE>Report on Space Management</CITE>, Butch Saul, 1997

<CITE>Consumer Perceptions</CITE>, Ben Hall, 1963

produces

Sources:

· Report on Space Management, Butch Saul, 1997

· Consumer Perceptions, Ben Hall, 1963

<CITE> is also commonly used to indicate ownership and authorship of a web page, usually at the bottom of the page under a <HR ...>

	this code
	produces this

	<HR>

<CITE>© 1996, Lynn Almond</CITE>
	

© 1996, Lynn Almond

<ADDRESS>
<ADDRESS> denotes contact information for the author or organization of the web site.

	this code
	produces this

	Our address by snail mail:<P>

<ADDRESS>
404 Sandia Court, Blacksburg, VA 24060

</ADDRESS>
	

<SAMP>
<SAMP> indicates text which is an example of something. It is also commonly used to represent some key piece of text that has special meaning.

	this code
	produces this

	If the file starts with <SAMP>nph-</SAMP>

then the web server passes all

output straight to the socket.
	If the file starts with nph- then the web server passes all output straight to the socket.

<SAMP> is rendered in a fixed width font. <SAMP> has a similar purpose to <CODE>.

<CODE>
<CODE> indicates text that is the code for a program. <CODE> is rendered in a fixed width font.

	this code
	produces this

	This code opens the data file:

<P>

<CODE>
open the listing file

unless (open(MYDATA, "data.txt"))

{die "couldn't open data file\n"}

</CODE>
	This code opens the data file:

open the listing file
unless (open(MYDATA, "data.txt"))
{die "couldn't open data file\n"}

For lengthy code examples, most authors prefer <PRE ...>, which is much better for showing spacing and indentation.

	· SRC: where to get the picture

· ALT: text to show if you don't show the picture

· NAME

· LONGDESC: URL of a long description of the image

· WIDTH: how wide is the picture

· HEIGHT: how tall is the picture

· ALIGN: how text should flow around the picture

· BORDER: border around the picture

· HSPACE: horizontal distance between the picture and the text

· VSPACE: vertical distance between the picture and the text

· ISMAP: is this a clickable map?
	
	· USEMAP: name of the map definition

· LOWSRC: a version of the picture that isn't such a big file

· NATURALSIZEFLAG: meaningless

· NOSAVE: meaningless

· DYNSRC: play a movie file

· CONTROLS: show the buttons which control the movie

· LOOP: how many times to loop the movie

· START: when to start playing the movie

· onLoad: script to runs after the image is downloaded

· SUPPRESS: Don't show icons of images that haven't downloaded yet

Attribute for
SRC = "text string"
SRC tells where to get the picture that should be put on the page.
	this code

	

ALT = "text string"
ALT specifies text that should be displayed if the picture is not displayed.

	this code

	

WIDTH = "width expression"
HEIGHT = "height expression"
WIDTH and HEIGHT tell the browser the dimensions of the image

	this code

	

ALIGN = LEFT | RIGHT | TOP | TEXTTOP | MIDDLE | ABSMIDDLE | BOTTOM | ABSBOTTOM | BASELINE
ALIGN sets the alignment of the image relative to the text around it.

The values for ALIGN can be divided into two groups: LEFT and RIGHT, which put the image on the left or right side of the page; and all the other values, which concern the vertical placement of an inline image.

LEFT and RIGHT
LEFT and RIGHT put the image on the left or right side of the page and cause the text to wrap around it:

	this code
	produces this

	
	[image: image164.png]Now is the fime For all good people to come to the aid of their world. Now
VSPACE

BORDER

O,
blah blah blah zyadayada
blah blah blah gy"d" yada
blah blah blah gy":" y":"
blah blah blah i
blah blah blah %2 vaca

Byadayada
CELLSPACING
:“m'je':“m ack ack.
oo ack ack.

HSPACE

is the fime for
all good people
to come to the
aid of their
world. Now is
the time for all
go0d people to
come to the aid
of their world.
Now i the time
for all good
people to come
o the aid of
their world.

BGCOLOR

(eolor of cell)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diem nonummy nibh euismod tincidunt ut lacreet dolore magna aliguam erat volutpat.

	
	[image: image165.png]File A File B

filea ntml filen htul

File © File D

file meal filed meml
tells the browser to
go get these four files

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diem nonummy nibh euismod tincidunt ut lacreet dolore magna aliguam erat volutpat.

Text will continue to wrap around the image until it gets past the image, or until you use <BR CLEAR="..."> to cause text to skip down to after the image:

	this code
	produces this

	

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.<BR CLEAR=ALL>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diem

nonummy nibh euismod tincidunt ut lacreet dolore magna aliguam erat

volutpat.
	[image: image166.png]and put them all on
one page in separate
rectangles ("frames'

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diem nonummy nibh euismod tincidunt ut lacreet dolore magna aliguam erat volutpat.

If the text looks crowded too close to the image, you may want to check and .

BORDER = integer
BORDER is most useful for removing the visible border around images which are inside links. By default images inside lunks have visible borders around them to indicate that they are links. However, user generally recognize these "link moments" and the border merely detracts from the appearance of the page. For example, this button has a border around it:

	this code

	<IMG SRC="idocs.gif"

 ALT="Idocs Guide to HTML"

 HEIGHT=33 WIDTH=82>

HSPACE
VSPACE
HSPACE sets the horizontal space between the image and surrounding text. VSPACE sets the vertical space between the image and surrounding text.

	this code

	<IMG SRC="pumpkin.gif"

 ALT="picture of a pumpkin"

 HEIGHT=100 WIDTH=100

 ALIGN=LEFT>

	<IMG SRC="pumpkin.gif"

 ALT="picture of a pumpkin"

 HEIGHT=100 WIDTH=100

 HSPACE=10 ALIGN=LEFT>

LOWSRC
Because some image files take so long to download, LOWSRC was created to download a smaller image first before the "main" image.

	this code

	<IMG

 SRC="../graphics/paulonbike.gif"

 LOWSRC="../graphics/paulonbike_lowsrc.gif"

 HEIGHT=378 WIDTH=516 ALT="A bike and his boy">

.

Table

Table uses the basic three tags:

<TABLE ...> <TABLE ...> creates the table. Most of the overall properties of the table are defined here, such as if it has borders and what is the table's background color.

<TR ...> <TR ...> (Table Row) defines each row of the table.
<TH…> <TD ...> (Table heading) defines heading each cell of the table
<TD ...> <TD ...> (Table Data) defines each cell of the table.
	Code
	produce

	<TABLE BORDER=2>

<TR> <TD>Radha </TD> <TD>1493</TD> </TR>

<TR> <TD>Shalom </TD> <TD>3829</TD> </TR>

<TR> <TD>Hari</TD> <TD>8372</TD> </TR>

<TR> <TD>Shani </TD> <TD>4827</TD> </TR>

</TABLE>

Add to the table header in this table

<TABLE BORDER=2>

<TR> <TH>Name</TH> <TH>ID</TH> </TR>

<TR> <TD>Radha </TD> <TD>1493</TD> </TR>

<TR> <TD>Shalom </TD> <TD>3829</TD> </TR>

<TR> <TD>Hari</TD> <TD>8372</TD> </TR>

<TR> <TD>Shani </TD> <TD>4827</TD> </TR>

</TABLE>

	Radha

1493

Shalom

3829

Hari

8372

Shani

4827

Name

ID

Radha

1493

Shalom

3829

Hari

8372

Shani

4827

<TABLE ...> and its attributes
· BORDER: size of border around the table

· CELLPADDING: space between the edge of a cell and the contents

· CELLSPACING: space between cells

· WIDTH: width of the table as a whole

· BGCOLOR: color of the background

· BACKGROUND: picture to use as background

· ALIGN: alignment of table to surrounding text
· HSPACE: horizontal space between table and surrounding text

· VSPACE: vertical space between table and surrounding text
· HEIGHT: height of the table as a whole
· FRAME: parts of outside border that are visible
· RULES: if there should be internal borders
· BORDERCOLOR: color of border around the table
· BORDERCOLORLIGHT: color of "light" part of border around the table
· BORDERCOLORDARK: color of "dark" part of border around the table
Here's a picture illustrating some of the most common <TABLE ...> attributes.

BORDER = integer
BORDER establishes the size of the border surrounding the table. The default value is 0, which is an invisible border. If you put in BORDER without a value, it defaults to 1.

	<TABLE BORDER=0>
	<TABLE BORDER>
	<TABLE BORDER=15>

CELLPADDING = integer
CELLPADDING sets the amount of space (both horizontal and vertical) between the cell wall and the contents. The default value for CELLPADDING is 1.

CELLSPACING = integer
CELLSPACING sets the amount of space between the cells of a table. If the borders are visible, CELLSPACING controls the width of the internal borders.

WIDTH = "width expression"
WIDTH sets the width of the table. The width can be expressed either as an absolute value in pixels, or as a percentage of the screen width. A common value for WIDTH is 100%, which gives the table a nice full-page look.

<TABLE WIDTH=100%>

<TR><TD>peaches</TD><TD>cherries</TD></TR>

<TR><TD>walnuts</TD><TD>almonds</TD></TR>

</TABLE>

BGCOLOR = color expression
BGCOLOR sets the background color of the entire table. For example, this code creates a table with a background color of yellow:

	<TABLE BGCOLOR=YELLOW>

<TR>

 <TD>lemons</TD> <TD>grapefruit</TD> </TR>

<TR>

 <TD>bananas</TD> <TD>pineapple</TD> </TR> </TABLE>

You can also set the background colors of rows with <TR BGCOLOR="..."> and of individual cells with <TD BGCOLOR="...">.

BACKGROUND = "URL"BACKGROUND sets a background image for the table.
<TABLE CELLPADDING=8 CELLSPACING=0 BACKGROUND="sea.gif">

ALIGN = LEFT | RIGHT
ALIGN sets which side of the page the table will rest on. ALIGN makes the table behave much like a graphic image: text can wrap around the table, you can set horizontal and vertical space from the table, and you can use <BR ...> to move past the table.

HSPACE = integer
VSPACE = integer
HSPACE and VSPACE indicate the amount of horizontal and vertical space to put between the table and surrounding text. They must be used in conjunction with ALIGN=LEFT or ALIGN=RIGHT. These attributes are only recognized by Netscape.

	<TABLE BORDER ALIGN=LEFT HSPACE=10>

	<TABLE BORDER ALIGN=LEFT HSPACE=50>

HEIGHT = "height expression"
HEIGHT sets the height of the table.

<TABLE HEIGHT=300 BORDER=1>

<TR>

 <TD>lemons</TD>

 <TD>grapefruit</TD>

 </TR>

<TR>

 <TD>bananas</TD>

 <TD>pineapple</TD>

 </TR>

</TABLE>

FRAME = VOID | BOX | BORDER | ABOVE | BELOW | LHS | RHS | HSIDES | VSIDES
FRAME sets which outer borders are visible. In the next several pages we'll look at all nine value of FRAME.

FRAME=VOID means that there should be no outer border.

<TABLE BORDER=2 FRAME=VOID RULES=ALL>

RULES = NONE | ALL | COLS | ROWS | GROUPS
RULES indicate if there should be internal borders in the table. RULES and FRAME have an annoying way of changing each others .
RULES = NONE
RULES=NONE means that there are no inside borders. RULES=NONE is the default if you don't use BORDER or set it to zero, but otherwise must be explicitly stated to have no inside borders

<TABLE BORDER=2 RULES=NONE FRAME=BOX>

gives us

	Name
	Food

	Starflower
	stir fied tofu

	Miko
	vegetable rice soup

	Andy
	hummus

	Ping
	french toast

RULES = GROUPS
RULES=GROUPS allows you to put borders between groups of table cells. There are two ways cells can be grouped: by row and by column.

<TR ...> and its attributes

· ALIGN: horizontal alignment of cell contents

· HALIGN

· VALIGN: vertical alignment of cell contents
· BGCOLOR: background color

· BACKGROUND: background image
· BORDERCOLOR: color of border around each cell
· BORDERCOLORLIGHT: color of "light" part of border around each cell
· BORDERCOLORDARK: color of "dark" part of border around each cell
<TR ...> designates a table row. Each <TR ...> element contains one or more <TD ...> or <TH ...> elements
<TABLE BORDER CELLPADDING=8>

<TR> <TD>peaches</TD> <TD>grapes</TD> <TD>oranges</TD> </TR>
<TR> <TD>watermelon</TD> <TD>limes</TD> <TD>watermelon</TD> </TR>
</TABLE>

	peaches
	grapes
	oranges

	watermelon
	limes
	watermelon

ALIGN = LEFT | CENTER | RIGHT
HALIGN = LEFT | CENTER | RIGHT
ALIGN sets the horizontal alignment of the cells in the row. One of the most common situations where ALIGN is useful is when you have a row of table headers that you want to align left with the text instead of being centered. So, for example, this code sets the first row of cells to align left:

<TABLE BORDER>

<TR ALIGN=LEFT> <TH>Fruit</TH> <TH>State</TH> </TR>

<TR> <TD>watermelon</TD> <TD>Georgia</TD> </TR>

<TR> <TD>apples</TD> <TD>Washington</TD> </TR>

</TABLE>

which gives us this table:

	Fruit
	State

	watermelon
	Georgia

	apples
	Washington

VALIGN = TOP | MIDDLE | BOTTOM | BASELINE
VALIGN sets the vertical alignment of the row. VALIGN can be set to TOP, MIDDLE, BOTTOM, or BASELINE.

	this code
	produces this

	<TR VALIGN=TOP>
	Fruit

Largest
State
Producer

	<TR VALIGN=MIDDLE>
	Fruit

Largest
State
Producer

	<TR VALIGN=BOTTOM>
	Fruit

Largest
State
Producer

BGCOLOR = color expression
BGCOLOR sets the background color for a table row.

	this code
	produces this

	<TABLE CELLPADDING=8>

<TR BGCOLOR="#CCCC99">

 <TD>lemons</TD>

 <TD>grapefruit</TD>

 </TR>

<TR>

 <TD>bananas</TD>

 <TD>pineapple</TD>

 </TR>

</TABLE>
	lemons

grapefruit

bananas

pineapple

BORDERCOLOR = color expression
BORDERCOLORDARK = color expression
BORDERCOLORLIGHT = color expression
BORDERCOLOR, BORDERCOLORLIGHT, and BORDERCOLORDARK work just like their corresponding attributes in the <TABLE ...> tag.
<TD ...>
· ALIGN: horizontal alignment of cell contents

· VALIGN: vertical alignment of cell contents

· WIDTH: width of cell

· HEIGHT: height of cell

· COLSPAN: number of columns to cover
· ROWSPAN: number of rows to cover

· NOWRAP: don't word wrap
· BGCOLOR: color of the background
· BORDERCOLOR: color of border around the table
· BORDERCOLORDARK: color of "dark" part of border around the table
· BORDERCOLORLIGHT: color of "light" part of border around the table
· BACKGROUND: picture to use as background

<TD ...> and </TD> set a single table cell.

<TABLE>

<TR>

<TD>peaches</TD>
<TD>cherries</TD>
</TR>

<TR>

<TD>walnuts</TD>
<TD>almonds</TD>
</TR>

</TABLE>

	peaches
	cherries

	walnuts
	almonds

ALIGN = LEFT | CENTER | MIDDLE | RIGHT
VALIGN = TOP | MIDDLE | CENTER | BOTTOM | BASELINE
Horizontal alignment (left, center, right) within the table cell.
WIDTH = "width expression"
HEIGHT = "height expression"
WIDTH is supposed to set the width of the table cell. So, for example, the following code where the columns are 200 and 400 wide:

<TABLE BORDER>

<TR> <TD WIDTH=200>watermelon</TD> <TD WIDTH=400>Georgia</TD> </TR>

<TR> <TD>apples</TD> <TD>Washington</TD> </TR>

<TR> <TD>blueberries</TD> <TD>New Hampshire</TD> </TR>

</TABLE>

	watermelon
	Georgia

	apples
	Washington

	blueberries
	New Hampshire

You can also use percentages. Be sure to enclose percents in quotes. For example, this code creates a table where the columns should be 80% and 20% wide

<TABLE BORDER>

<TR> <TD WIDTH="80%">watermelon</TD> <TD WIDTH="20%">Georgia</TD> </TR>

<TR> <TD>apples</TD> <TD>Washington</TD> </TR>

<TR> <TD>blueberries</TD> <TD>New Hampshire</TD> </TR>

</TABLE>

COLSPAN = integer
ROWSPAN = integer
Table cells can span across more than one column or row. The attributes COLSPAN ("how many across") and ROWSPAN ("how many down") indicate how many columns or rows a cell should take up.

<TABLE BORDER=2 CELLPADDING=4>

<TR> <TH COLSPAN=2>Production</TH> </TR>

<TR> <TD>Raha Mutisya</TD> <TD>1493</TD> </TR>

<TR> <TD>Shalom Buraka</TD> <TD>3829</TD> </TR>

<TR> <TD>Brandy Davis</TD> <TD>0283</TD> </TR>

<TR> <TH COLSPAN=2>Sales</TH> </TR>

<TR> <TD>Claire Horne</TD> <TD>4827</TD> </TR>

<TR> <TD>Bruce Eckel</TD> <TD>7246</TD> </TR>

<TR> <TD>Danny Zeman</TD> <TD>5689</TD> </TR>

</TABLE>

which gives us:

	Production

	Raha Mutisya
	1493

	Shalom Buraka
	3829

	Brandy Davis
	0283

	Sales

	Claire Horne
	4827

	Bruce Eckel
	7246

	Danny Zeman
	5689

ROWSPAN sets how many rows a cell spans.

<TABLE BORDER=2 CELLPADDING=4>

<TR>

 <TH ROWSPAN=3 BGCOLOR="#99CCFF">Production</TH>

 <TD>Raha Mutisya</TD> <TD>1493</TD>

 </TR>

<TR>

 <TD>Shalom Buraka</TD> <TD>3829</TD>

 </TR>

<TR>

 <TD>Brandy Davis</TD> <TD>0283</TD>

 </TR>

<TR>

 <TH ROWSPAN=3 BGCOLOR="#99CCFF">Sales</TH>

 <TD>Claire Horne</TD> <TD>4827</TD>

 </TR>

<TR>

 <TD>Bruce Eckel</TD> <TD>7246</TD>

 </TR>

<TR>

 <TD>Danny Zeman</TD> <TD>5689</TD>

 </TR>

</TABLE>

	Production
	Raha Mutisya
	1493

	
	Shalom Buraka
	3829

	
	Brandy Davis
	0283

	Sales
	Claire Horne
	4827

	
	Bruce Eckel
	7246

	
	Danny Zeman
	5689

BGCOLOR = color expression
BGCOLOR sets the background color of a single cell in a table.

	this code
	produces this

	<TABLE CELLPADDING=8>

<TR>

 <TD>lemons</TD>

 <TD BGCOLOR="#FF6699">grapefruit</TD>

 </TR>

<TR>

 <TD>bananas</TD>

 <TD>pineapple</TD>

 </TR>

</TABLE>
	lemons

grapefruit

bananas

pineapple

BORDERCOLOR = color expression
BORDERCOLORLIGHT = color expression
BORDERCOLORDARK = color expression
BORDERCOLOR, BORDERCOLORLIGHT, and BORDERCOLORDARK work just like their counterparts in the <TABLE ...> tag to set the border colors of the table cell..
<TH ...>
	Usage Recommendation

	use it if you use <TABLE ...>

<TH ...> works just like <TD ...>, except that <TH ...> indicates that the cell is a header for a column or row. is identical to <TD ...> in every way except one: <TH ...> indicates that the table cell is a header cell, a title for a column or row. <TH ...> cells are generally rendered with the letters in bold.

<TABLE BORDER CELLPADDING=4>

<TR> <TH>name</TH> <TH>extension</TH> <TH>department</TH> </TR>

<TR> <TD>Lynn Almond</TD> <TD>x 9882</TD> <TD>Cooking</TD> </TR>

<TR> <TD>Roby Robinson</TD> <TD>x 9432</TD> <TD>Landscaping</TD> </TR>

</TABLE>

produces

	name
	extension
	department

	Lynn Almond
	x 9882
	Cooking

	Roby Robinson
	x 9432
	Landscaping

<CAPTION ...>
· ALIGN: alignment of caption to table

· VALIGN: if caption should be above or below table

<CAPTION ...> sets a caption for the table. <CAPTION ...> goes just after the <TABLE ...> tag. It does not go inside a <TR ...>, <TD ...> or <TH ...> element. There should be only one <CAPTION ...> per table.

<TABLE BORDER=2 CELLPADDING=3>

<CAPTION>Favorite Foods</CAPTION>
<TR> <TH>Person</TH> <TH>Food</TH> </TR>

<TR> <TD>Ping</TD> <TD>French Toast</TD> </TR>

<TR> <TD>Andy</TD> <TD>Squirrel</TD> </TR>

</TABLE>

which gives us this table:

	Favorite Foods

	Person
	Food

	Ping
	French Toast

	Andy
	Squirrel

<CAPTION ...> is rarely used even though virtually every browser in use these days supports it.

ALIGN = TOP | BOTTOM | LEFT | RIGHT
ALIGN sets the alignment of the table caption. ALIGN doesn't work like other alignment attributes. There are only four accepable values. ALIGN=TOP puts the caption n top of the table, and ALIGN=BOTTOM put it below. ALIGN=LEFT puts the caption on top to the left, and ALIGN=RIGHT puts it on top to the right.

	this code
	produces this

	<CAPTION ALIGN=TOP>
	Favorite Foods

Person

Food

Ping

French Toast with Powdered Sugar

Andy

Tofu with Sprouts

You may have noticed that there are no options for putting the caption below and to the right or below and to the left. MSIE recognizes a VALIGN attribute but not Netscape. If you want to put the caption on the bottom to the right or left you can use styles:

	this code
	produces this

	<CAPTION

 ALIGN=BOTTOM >
	Person

Food

Ping

French Toast with Powdered Sugar

Andy

Tofu with Sprouts

Favorite Foods

<THEAD ...>, <TBODY ...> , <TFOOT ...>

<THEAD ...>, <TBODY ...>, and <TFOOT ...> establish groups of rows. <THEAD ...> indicates that a group of rows are the header rows at the top of the table. <TBODY ...> indicates that a group of rows are body rows. <TFOOT ...> indicates that a group of rows are the footer rows at the bottom of the table.

Frames

The frameset file uses <FRAMESET ...> and <FRAME ...> to tell the browser to go get more files to put on the page.

The browser puts all the files on one page in separate rectangles ("frames"). The user never sees anything from the original frameset file.

Think of frames as creating a "table of documents" on the page. Like a table, a group of frames has rows and columns. Each cell of the table contains a document which is stored in a separate file. <FRAMESET ...> defines the beginning and end of the table, and how many rows and columns that table will have. <FRAME ...> defines what will go into each cell ("frame") of the table.

	<HTML>

<HEAD>

<TITLE>A Basic Example of Frames</TITLE>

</HEAD>

<FRAMESET ROWS="75%, *" COLS="*, 40%">

 <FRAME SRC="framea.html">

 <FRAME SRC="frameb.html">

 <FRAME SRC="framec.html">

 <FRAME SRC="framed.html">

 <NOFRAMES>
 <H1>No Frames? No Problem!</H1>

 Take a look at our

 no-frames

 version.

 </NOFRAMES>

</FRAMESET>
</HTML>

Line-by-line explanation of each piece of code for the frames:

<FRAMESET

Start the "table of documents".

ROWS="75%, *"

The table should have two rows. The first row should take up 75% of the height of the page, the second should take up the rest.

COLS="*, 40%">

The table should also have two columns. The second column should take up 40% of the width of the page, the first column should take up the rest.

<FRAME SRC="framea.html">
<FRAME SRC="frameb.html">
<FRAME SRC="framec.html">
<FRAME SRC="framed.html">

Put the four files into the frames.

<NOFRAMES> ... </NOFRAMES>

Every framed page should have a no-frames alternative. The <NOFRAMES> content should go inside the outermost <FRAMESET ...> tag, usually just before the last </FRAMESET>. The most efficicent method for no-frames content is to link to a page which is specifically designed for no-frames.

</FRAMESET>

End the frameset.

<FRAMESET ...>
· COLS: how many cols in the frameset

· ROWS: how many rows in the frameset
· FRAMEBORDER: if the frames should have borders
· FRAMESPACING: space between the frames

· BORDER: space between frames
· BORDERCOLOR: color of frame borders

<FRAMESET ...> defines the general layout of a web page that uses frames. <FRAMESET ...> is used in conjunction with <FRAME ...> and <NOFRAMES>.

	<HTML>

<HEAD>

<TITLE>A Basic Example of Frames</TITLE>

</HEAD>

<FRAMESET ROWS="75%, *" COLS="*, 40%">
 <FRAME SRC="framea.html">

 <FRAME SRC="frameb.html">

 <FRAME SRC="framec.html">

 <FRAME SRC="framed.html">

</FRAMESET>
</HTML>

<FRAMESET ...> itself only define how many rows and columns of frames there will be. <FRAME ...> defines what files will actual go into those frames.

<FRAMESET ...> can be nested within another <FRAMESET ...> to create a "table within a table". This set of nested framesets creates the popular "title and sidebar" layout.

	<HTML>

<HEAD>

<TITLE>Great Recipes</TITLE>

</HEAD>

<FRAMESET ROWS="15%,*">
 <FRAME SRC="recipetitlebar.html" NAME=TITLE SCROLLING=NO>

 <FRAMESET COLS="20%,*">
 <FRAME SRC="recipesidebar.html" NAME=SIDEBAR>

 <FRAME SRC="recipes.html" NAME=RECIPES>

 </FRAMESET>

</FRAMESET>
</HTML>

The first <FRAMESET ...> creates a "table" of two rows and only one column (because there is no COLS attribute). The first row in the frameset is filled in by the first <FRAME ...>. The row in the frameset is filled in not by a frame but by another <FRAMESET ...>. This inner frameset has two columns, which are filled in by two <FRAMESET ...>'s.

COLS = integer
ROWS = integer
COLS and ROWS establish the quantity and sizes of the columns and rows in a frameset. The value for each attribute is a comma separated list of sizes (in pixels or percents

	<FRAMESET ROWS="80%,20%" COLS="60%,20%,20%">

 <FRAME SRC="rowcol1a.html">

 <FRAME SRC="rowcol1b.html">

 <FRAME SRC="rowcol1c.html">

 <FRAME SRC="rowcol1d.html">

 <FRAME SRC="rowcol1e.html">

 <FRAME SRC="rowcol1f.html">

<NOFRAMES>NOFRAMES stuff
</NOFRAMES>

</FRAMESET>

The ROWS attribute says that the first row should be 80% of the height of the window and the second row should be 20%. The COLS attribute says that the first column should be 60% of the width of the window, the second column 20%, and the third another 20%.

If you use an asterisk ("*") in place of a number, that says "use whatever is left over". If more than one asterisk is used then the remaining space is divided evenly.
FRAMEBORDER = YES | 1 | NO | 0
FRAMESPACING = integer
BORDER = integer
	<FRAMESET ROWS="20%,*" FRAMEBORDER=1 FRAMESPACING=30 BORDER=30>

The most common use of FRAMEBORDER, FRAMESPACING, and BORDER is to create a page with no space between the borders.
	<FRAMESET ROWS="20%,*" FRAMEBORDER=NO FRAMESPACING=0 BORDER=0>

BORDERCOLOR = color expression
BORDERCOLOR sets the color of the borders in the frameset.

	<FRAMESET ROWS="50%,*" BORDERCOLOR=RED>

 <FRAME SRC="fsbctitle.html">

 <FRAME SRC="fsbcmain.html">

</FRAMESET>

<FRAME ...>
· SRC: what file to put in the frame

· NAME: the name of the frame

· SCROLLING: should the frame have a scrollbar?
· NORESIZE: don't let the user make the frame bigger or smaller

· FRAMEBORDER: should this frame have a border?
· BORDERCOLOR: color of the surrounding border
· MARGINWIDTH: the internal left and right margins for the frame
· MARGINHEIGHT: the internal top and bottom margins for the frame

<FRAME ...> sets a single frame in the framed page. <FRAME ...> always goes inside a <FRAMESET ...> element.
	<FRAMESET ROWS="20%,*">

 <FRAME SRC="frame1_title.html" NAME="TITLE">

 <FRAME SRC="frame1_body.html" NAME="MAIN">
</FRAMESET>

SRC = "URL"
SRC indicates the URL to put into the frame.

NAME = "text string"
NAME is used in conjunction with to indicate which frame the link targets.
SCROLLING = YES | NO | AUTO
SCROLLING says if there should be a scroll bar on the right and/or bottom of the frame. YES says there absolutely will be scroll bars, even if they are not needed. NO says there will not be scroll bars, even if they might be needed. AUTO is the default: there will be scroll bars on the side and/or bottom as needed.

	<FRAMESET ROWS="30%,30%,*">

 <FRAME SRC="scrollingYes.html" SCROLLING=YES>

 <FRAME SRC="scrollingNo.html" SCROLLING=NO>

 <FRAME SRC="scrollingAuto.html" SCROLLING=AUTO>

</FRAMESET>

NORESIZE
NORESIZE says that the user cannot make the frame bigger or smaller by sliding the borders. Normally the user can put the mouse over the border and move the border left/right or up/down. NORESIZE disables that ability.

	<FRAMESET ROWS="20%,*">

 <FRAME SRC="recipetitlebar.html" NAME=TITLE NORESIZE>

 <FRAMESET COLS="20%,*">

 <FRAME SRC="recipesidebar.html" NAME=SIDEBAR>

 <FRAME SRC="recipes.html" NAME=RECIPES>

 </FRAMESET></FRAMESET>

FRAMEBORDER = YES | 1 | NO | 0
FRAMEBORDER declares if there is a border around the frame. YES (or the older 1) set the border to on. They are the default. NO (or 0) set the border to off (which often still a thin gray bar).

	<FRAMESET ROWS="*,40%,30%,*,*">

 <FRAME SRC="fbRow1.html">

 <FRAME SRC="fbRow2.html" FRAMEBORDER=NO>

 <FRAME SRC="fbRow3.html" FRAMEBORDER=YES>

 <FRAME SRC="fbRow4.html">

 <FRAME SRC="fbRow5.html">

</FRAMESET>

BORDERCOLOR = color expression
BORDERCOLOR sets the color of the borders around the frame.

	<FRAMESET ROWS="40%,*">

 <FRAME SRC="bcRow3.html" BORDERCOLOR=RED>

 </FRAMESET>

MARGINWIDTH = size in pixels
MARGINHEIGHT = size in pixels
MARGINWIDTH and MARGINHEIGHT control the inside margins of the document in the frame.

	<FRAMESET ROWS="60%,*,*">

 <FRAME SRC="mwTop.html">

 <FRAME SRC="mwMiddle.html" MARGINWIDTH=1>

 <FRAME SRC="mwBottom.html" MARGINWIDTH=50>

</FRAMESET>

	<FRAMESET COLS="33%,33%,*">

 <FRAME SRC="mhLeft.html">

 <FRAME SRC="mhCenter.html" MARGINHEIGHT=1>

 <FRAME SRC="mhRight.html" MARGINHEIGHT=50>

</FRAMESET>

The official specifications say that MARGINWIDTH and MARGINHEIGHT should be set to values of greater than 1... 0 is not an acceptable value.

<NOFRAMES>
<NOFRAMES> holds text that should be displayed for people who don't have frames. A large percentage of people on the web don't use browsers which can read frames. You can avoid leaving out those people by using <NOFRAMES>.

	<HTML>

<HEAD>

<TITLE>Example of NOFRAMES in the BODY</TITLE>

</HEAD>

<BODY>

<NOFRAMES>
<H1>My Home Page</H1>

</NOFRAMES>
regular BODY contents
</BODY>
</HTML>

Form

<FORM ...>
· ACTION: URL of the CGI program

· METHOD: how to transfer the data to the CGI

· NAME: name of this form

· ENCTYPE: what type of form this is
· TARGET: what frames to put the results in
· onSubmit: script to run before the form is submitted
· onReset: script to run before the form is reset

<FORM ...> indicates the beginning of a form. All other form tags go inside <FORM ...>. In its simplest use, <FORM ...> can be used without any attributes:

	<FORM>
name: <INPUT>

email: <INPUT>

</FORM>
	Top of Form

name: [image: image1.wmf]

email: [image: image2.wmf]

Bottom of Form

ACTION = "URL"
ACTION gives the URL of the CGI program which will process this form. For example, the CGI program "MyCGI" is located at ../cgi-bin/mycgi.pl (you can go directly to that URL). This form uses "MyCGI":

	<FORM ACTION="../cgi-bin/mycgi.pl">

favorite color: <INPUT NAME=COLOR>

<INPUT TYPE=SUBMIT>

</FORM>
	Top of Form

favorite color: [image: image3.wmf]

[image: image4.wmf]S

ubmit Query

Bottom of Form

When you click submit, your browser sends the form data to the CGI indicated in ACTION.

METHOD = GET | POST
METHOD specifies the method of transferring the form data to the web server. METHOD can be either GET or POST. Each method has its advantages and disadvantages.

METHOD = GET
GET sends the data as part of the URL. For example, suppose you enter the value "West Rochester" in this form below:

	this code
	produces this

	<FORM METHOD=GET ACTION="../cgi-bin/mycgi.pl">

town: <INPUT NAME="town">

<INPUT TYPE=SUBMIT>

</FORM>
	Top of Form

town: [image: image5.wmf]

[image: image6.wmf]S

ubmit Query

Bottom of Form

The value entered in the "town" field is tacked on to the end of the CGI's URL like this:

../cgi-bin/mycgi.pl?town=West+Rochester
When the form data (or "query data") is added to the end of the URL it is "URL encoded" so that the data can be used in a standard URL. The neat thing about URL encoding is that each different query to the CGI has a different URL. Those unique URLs can be used directly in links without any form being involved. For example, the URL above can be used to create a link to exactly the same CGI results:

West Rochester

The amount of data that can be sent with a URL is limited. GET is good for short forms (ten or fewer fields and no <TEXTAREA ...> or file uploads).

METHOD = POST
POST is the preferred method for sending lengthy form data. When a form is submitted POST the user does not see the form data that was sent. For example, this form uses POST:

<FORM METHOD=POST ACTION="../cgi-bin/mycgi.pl">

Bottom of Form

NAME = "text string"
NAME gives a name to the form. This is most useful in scripting, where you frequently need to refer to
[image: image7.png]

Top of Form

	radius: [image: image8.wmf]

	
	circumference: [image: image9.wmf]

area: [image: image10.wmf]

Bottom of Form

It is possible to refer to the form without using NAME, and sometimes it makes for less work. To give the above example we needed to create the whole script all over again. Instead, we could use the original CircleAreaCalc function at the top of this page, which allows us to pass in the form object as an argument (using this.form), obviating the need for NAME:

<FORM><!-- note there is no NAME atttibute -->
<TABLE BORDER CELLPADDING=3>

<!-- circumference and radius of a circle -->

<TR>

 <TD><NOBR>radius: <INPUT NAME="Circle_radius" SIZE=4></NOBR></TD>

 <TD><INPUT TYPE=BUTTON OnClick="Circle_calc(this.form);" VALUE="calculate"></TD>

 <TD ALIGN=RIGHT BGCOLOR="#AACCFF">

 <NOBR>circumference: <INPUT NAME="Circle_circumference" SIZE=9></NOBR>

 <NOBR>area: <INPUT NAME="Circle_area" SIZE=9></NOBR></TD>

 </TR>

</TABLE>

</FORM>

which gives us

Top of Form

	radius: [image: image11.wmf]

	
	circumference: [image: image12.wmf]

area: [image: image13.wmf]

Bottom of Form

Another much worse way to refer to the form without giving it a name is to use the form's index in the forms array. If our form were the first form on this web page, we could refer to it like this:

var CircleRadius = parseFloat(document.forms[0].Circle_radius.value);

That would require keeping track of how many forms down on the page it is, and on a page like this that would be way too much trouble.

	· TYPE: what type of field

· NAME: name of this form field

· VALUE: initial or only value of this field

· SIZE: how wide the text field should be

· MAXLENGTH: maximum number of characters

· CHECKED: check this checkbox or radio button

· BORDER: border around image

· SRC: URL of image

· ALT: text to show if you don't show the picture

· LOWSRC: a version of the picture that isn't such a big file

· WIDTH: width of image

· HEIGHT: height of image

· ALIGN: how text should flow around the picture

· VSPACE: vertical distance between the picture and the text
	
	· HSPACE: horizontal distance between the picture and the text

· READONLY: the value of this field cannot be changed

· DISABLED: don't let the user do anything with this field

· ACCESSKEY

· TABINDEX: tab order

· LANGUAGE: scripting language to use

· onClick: when the user clicks here

· onChange: when this field is changed

· onFocus: when this field gets the focus

· onBlur: when this field loses the focus

· onKeyPress: script to run when a key is pressed

· onKeyUp: script for when a key goes up while the field has the focus

· onKeyDown: script for when a key goes down while the field has the focus

· AUTOCOMPLETE: If the browser should use autocompletion for the field

<INPUT ...> creates the data entry fields on an HTML form. (Well, it creates most types of fields, <TEXTAREA ...> and <SELECT ...> also create some, as does the new <BUTTON ...> tag.) The TYPE attribute establishes what type of field the input is creating. The other <INPUT ...> attributes affect different types of inputs different ways (or not at all). So let's jump straight into the TYPE attribute and look at the different types of input fields.

Attribute for <INPUT ...>
TYPE = TEXT | CHECKBOX | RADIO | PASSWORD | HIDDEN | SUBMIT | RESET | BUTTON | FILE | IMAGE
TYPE establishes what type of data entry field this is. The <INPUT ...> tag has ten different types of fields (the <TEXTAREA ...>, <SELECT ...>, and <BUTTON ...> tags create the other types).

TYPE = TEXT
TEXT creates a text entry field (the most popular type of data entry field):

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

name: <INPUT TYPE=TEXT NAME="realname">

<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>
	Top of Form

name: [image: image14.wmf]

[image: image15.wmf]s

ubmit

Bottom of Form

TEXT is the default input type (if you want a text field, you don't even need to use the TYPE attribute).

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

<!-- Note absence of TYPE attribute -->

name: <INPUT NAME="realname">

<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>
	Top of Form

name: [image: image16.wmf]

[image: image17.wmf]s

ubmit

Bottom of Form

The behavior of TEXT fields can be modified using these attributes:

· VALUE: set an initial value for the field

· SIZE: how wide the field should be

· MAXLENGTH: the maximum number of characters the user can enter

TYPE = CHECKBOX
CHECKBOX creates a checkbox which can be either on or off:

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

<INPUT TYPE=CHECKBOX NAME="maillist">Yes! Put me on the list!<P>

<INPUT TYPE=SUBMIT VALUE="submit">

</FORM>
	Top of Form

[image: image18.wmf]Yes! Put me on the list!

[image: image19.wmf]s

ubmit

Bottom of Form

CHECKBOX is often used in groups to indicate a series of choices any one of which can be on or off:

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

<INPUT TYPE=CHECKBOX NAME="mushrooms" >mushrooms

<INPUT TYPE=CHECKBOX NAME="greenpeppers">green peppers

<INPUT TYPE=CHECKBOX NAME="olives" >olives

<INPUT TYPE=CHECKBOX NAME="onions" >onions<P>

<INPUT TYPE=SUBMIT VALUE="submit">

</FORM>
	Top of Form

[image: image20.wmf]mushrooms
[image: image21.wmf]green peppers
[image: image22.wmf]olives
[image: image23.wmf]onions

[image: image24.wmf]s

ubmit

Bottom of Form

By default, the checkbox is initially off. If you want the checkbox initially on, use the CHECKED attribute. Checkbox CHECKBOXs are only sent to the CGI if they are on; if they are off, no name/value pair is sent (try out the form above to see).

TYPE = RADIO
RADIO is used to create a series of choices of which only one can be selected. The term "radio button" comes from the buttons for the radio in an automobile, where selecting one radio station automatically de-selects all the others. HTML radio buttons are created by using several <INPUT TYPE=RADIO> buttons, all with the same name, but with different values. For example, this series of buttons allows you to choose one size for a pizza:

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

What size pizza?<P>

<INPUT TYPE=RADIO NAME="pizzasize" VALUE="S">small

<INPUT TYPE=RADIO NAME="pizzasize" VALUE="M">medium

<INPUT TYPE=RADIO NAME="pizzasize" VALUE="L">large<P>

<INPUT TYPE=SUBMIT VALUE="submit">

</FORM>
	Top of Form

What size pizza?

[image: image25.wmf]small
[image: image26.wmf]medium
[image: image27.wmf]large

[image: image28.wmf]s

ubmit

Bottom of Form

Note that it is the content of the VALUE attribute that is sent to the CGI, not whatever text happens to appear next to the radio button.

If one of the items should be the default selection, use the CHECKED attribute:

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

What size pizza?<P>

<INPUT TYPE=RADIO NAME="pizzasize" VALUE="S" >small

<INPUT TYPE=RADIO NAME="pizzasize" VALUE="M" CHECKED >medium

<INPUT TYPE=RADIO NAME="pizzasize" VALUE="L" >large<P>

<INPUT TYPE=SUBMIT VALUE="submit">

</FORM>
	Top of Form

What size pizza?

[image: image29.wmf]small
[image: image30.wmf]medium
[image: image31.wmf]large

[image: image32.wmf]s

ubmit

Bottom of Form

If no CHECKED attribute is used, different browsers have different ways of displaying the initial state of a series of radio buttons. Netscape and MSIE have none of the buttons selected. Mosaic selects the first button.

TYPE = PASSWORD
PASSWORD indicates that the field is for typing in a password. PASSWORD works just like a TEXT type field, with the difference that whatever is typed is not displayed the screen (in case someone is watching over your shoulder or you have to leave the work station). Instead of showing what you typed in, the browser displays a series of asterisks (*), bullets (·), or something to show that you are typing, but not what you are typing. So, for example, this code:

<FORM ACTION="../cgi-bin/mycgi.pl" METHOD=POST>

name: <INPUT TYPE=TEXT NAME="realname">

password: <INPUT TYPE=PASSWORD NAME="mypassword">

<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>

gives us this form:

Top of Form

name: [image: image33.wmf]

password: [image: image34.wmf]

[image: image35.wmf]s

ubmit

Bottom of Form

Note that PASSWORD fields are not sent encrypted, they are sent in the same manner as all the other elements on the form: in the clear. Note also that when you use PASSWORD you should also set the form METHOD to POST.

TYPE = HIDDEN
HIDDEN indicates that the field is invisible and the user never interacts with it. The field is still sent to the CGI, and scripts can also use the hidden field. HIDDEN is commonly used as output of a CGI which creates a new form for more input. For example, a web site which facilitates online discussions may use a hidden field to keep track of which message is being responded to:

<H2>Your Reply</H2>

<FORM METHOD=POST ACTION="../cgi-bin/mycgi.pl">

<INPUT TYPE=HIDDEN NAME="postingID" value="98765">

name: <INPUT NAME="realname" SIZE=30>

email: <INPUT NAME="email">

subject: <INPUT NAME="subject" VALUE="Re: Hamlet and hesitation" SIZE=30>

<P>

comments:

<TEXTAREA NAME="comments" COLS=50 ROWS=10 WRAP=VIRTUAL>

Joe Smiley wrote:

: I think Hamlet doesn't act because if he does, the play's over.

</TEXTAREA>

<P><INPUT TYPE=SUBMIT VALUE="Send It!">

</FORM>

which gives us

Your Reply
Top of Form

[image: image36.wmf]

98765

name: [image: image37.wmf]

email: [image: image38.wmf]

subject: [image: image39.wmf]

Re: Hamlet and hesitation

comments:
[image: image40.wmf]

Joe Smiley wrote:

: I think Hamlet doesn't act because if he does, the

play's over.

[image: image41.wmf]S

end It!

Bottom of Form

TYPE = SUBMIT
SUBMIT creates the "Submit" button which sends the form in to the CGI. In its simplest form, you can use SUBMIT and no other attributes for the <INPUT ...> tag:

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

name: <INPUT NAME="realname">

email: <INPUT NAME="email"><P>

<INPUT TYPE=SUBMIT>

</FORM>
	Top of Form

name: [image: image42.wmf]

email: [image: image43.wmf]

[image: image44.wmf]S

ubmit Query

Bottom of Form

You can customize the text used for the button using the VALUE attribute:

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

name: <INPUT NAME="realname">

email: <INPUT NAME="email"><P>

<INPUT TYPE=SUBMIT VALUE="Send It!">

</FORM>
	Top of Form

name: [image: image45.wmf]

email: [image: image46.wmf]

[image: image47.wmf]S

end It!

Bottom of Form

You may sometimes find that you want to have more than one submit button on a form. If you give each button the same name, but different values, the browser will indicate which submit button was pressed:

<FORM ACTION="../cgi-bin/mycgi.pl">

Go to the check-out page?

<INPUT TYPE=SUBMIT NAME="checkout" VALUE="YES">

<INPUT TYPE=SUBMIT NAME="checkout" VALUE="NO">

</FORM>

which gives us

Top of Form

Go to the check-out page? [image: image48.wmf]YE

S

 HTMLCONTROL Forms.HTML:Submitbutton.1 [image: image49.wmf]NO

Bottom of Form

TYPE = RESET
RESET resets the form so that it is the way it was before anything was typed in:

<FORM ACTION="../cgi-bin/mycgi.pl">

<INPUT TYPE=TEXT>

<INPUT TYPE=SUBMIT>

<INPUT TYPE=RESET>

</FORM>

which gives us:

Top of Form

[image: image50.wmf]

 HTMLCONTROL Forms.HTML:Submitbutton.1 [image: image51.wmf]S

ubmit Query

 HTMLCONTROL Forms.HTML:Reset.1 [image: image52.wmf]R

eset

Bottom of Form

For a while it was the perception that all forms "had" to have a reset button, but designers have found that resets are more likely to detract from the form than add to it. Users don't usually need to reset their forms, and they are more likely to accidentally hit the reset button than they are to actually want to wipe out their work. Unless you have a specific reason to expect that users will need a reset button it's probably best to leave it out.

If you do choose to use have a reset button in your form, consider adding a check if the user actually wants to reset. You can do this by adding an onReset event handler to the <FORM ...> tag:

<FORM

 ACTION="../cgi-bin/mycgi.pl"

 onReset="return confirm('Do you really want to reset the form?')"
 >

<INPUT TYPE=TEXT NAME="query">

<INPUT TYPE=SUBMIT>

<INPUT TYPE=RESET>

</FORM>

which creates this form:

Top of Form

[image: image53.wmf]

 HTMLCONTROL Forms.HTML:Submitbutton.1 [image: image54.wmf]S

ubmit Query

 HTMLCONTROL Forms.HTML:Reset.1 [image: image55.wmf]R

eset

Bottom of Form

If you add the VALUE attribute to the tag then that value is used as the text for the button.

<FORM

 ACTION="../cgi-bin/mycgi.pl"

 onReset="return confirm('Do you really want to reset the form?')"

 >

<INPUT TYPE=TEXT NAME="query">

<INPUT TYPE=SUBMIT>

<INPUT TYPE=RESET VALUE="Start All Over">

</FORM>

which gives us:

Top of Form

[image: image56.wmf]

 HTMLCONTROL Forms.HTML:Submitbutton.1 [image: image57.wmf]S

ubmit Query

 HTMLCONTROL Forms.HTML:Reset.1 [image: image58.wmf]Sta

r

t All Over

Bottom of Form

TYPE = BUTTON
BUTTON defines a button which causes a script to run. Use the onClick attribute to give the script command(s). BUTTON is used only with scripting. Browsers that don't understand scripts don't understand this type of input and usually render it as a text input field.

[image: image59.png]

<FORM>

<TABLE BORDER CELLPADDING=3>

<TR>

 <TD><NOBR>radius: <INPUT NAME="Circle_radius" SIZE=4></NOBR></TD>

 <TD><INPUT TYPE=BUTTON OnClick="Circle_calc(this.form);" VALUE="calculate"></TD>

 <TD ALIGN=RIGHT BGCOLOR="#AACCFF">

 <NOBR>circumference: <INPUT NAME="Circle_circumference" SIZE=9></NOBR>

 <NOBR>area: <INPUT NAME="Circle_area" SIZE=9></NOBR></TD>

 </TR>

</TABLE>

</FORM>

gives us

Top of Form

	radius: [image: image60.wmf]

	
	circumference: [image: image61.wmf]

area: [image: image62.wmf]

Bottom of Form

TYPE = FILE
FILE is used for doing file uploads in a form. File uploads are a relatively new and still not well-standardized type of form input, but they show great promise once the bugs are ironed out. File uploads allow you to send an entire file from your computer to the web server as part of your form input.

<FORM METHOD=POST ENCTYPE="multipart/form-data" ACTION="../cgi-bin/mycgi.pl">

File to upload: <INPUT TYPE=FILE NAME="upfile">

<INPUT TYPE=SUBMIT VALUE="Submit">

</FORM>

which gives us this form (please note that the CGI for this form is set to accept only very small files, so try sending something under 1K):

Top of Form

File to upload:
[image: image63.wmf]S

ubmit

Bottom of Form

Configuring a form for file uploads requires setting two attributes in the <FORM ...> tags in addition to using <INPUT TYPE=FILE>: POST and "multipart/form-data" (as in the example above). When the data is sent, the original file name (including the full path) of the file as it was on your computer is sent to the web server. The CGI, however, is free to save the file as anything it wants -- or to not save it at all.

For the time being, only use form-based file upload if you know that the users will have Netscape (for example in an intranet or if the form is just for one person that you know has Netscape) or MSIE 4.0 or later.

An often expressed wish with file uploads is to have a way of suggesting the file type being uploaded. Netscape, for example, when it gives you the file upload dialog box, inexplicably assumes you want to upload an HTML file. Unfortunately, there is no way to suggest a file type

TYPE = IMAGE
	You may also want to check out how to create a rollover submit image for a form

IMAGE creates an image that is also a "submit" button. When the user clicks on the image, the form is submitted.

<FORM ACTION="../cgi-bin/mycgi.pl">

name: <INPUT NAME="realname">

<INPUT

 TYPE=IMAGE

 SRC="../graphics/sfsubmit.gif"

 HEIGHT=110 WIDTH=160

 ALT="Send It In!" ALIGN=ABSMIDDLE

 >
</FORM>

gives us

Top of Form

name: [image: image64.wmf]

 HTMLCONTROL Forms.HTML:Image.1 [image: image65.wmf]
Bottom of Form

Most of the attributes that work with also work with image inputs. Most particularly, make sure you use the ALT attribute.

Web browsers generally put a border around the image to indicate that it is "clickable", something that irritates many web designers because it detracts from the picture. If you want to get rid of the border, use BORDER:

<FORM ACTION="../cgi-bin/mycgi.pl">

name: <INPUT NAME="realname">

<INPUT

 TYPE=IMAGE

 SRC="../graphics/sfsubmit.gif" ALIGN="ABSMIDDLE"

 HEIGHT=110 WIDTH=160 ALIGN="ABSMIDDLE"

 ALT="Send It In!"

 BORDER=0

 >

</FORM>

gives us

Top of Form

name: [image: image66.wmf]

 HTMLCONTROL Forms.HTML:Image.1 [image: image67.wmf]
Bottom of Form

However, make sure you provide some cue that the image is clickable. Some objections have been raised to getting rid of the border, because it gets rid of the "standard" cue that the image is clickable. However, image submit buttons have become quite common, and if the button is properly designed to look like a button and if it is situated where the submit button would usually be (at the end of the form), users will generally pick up that it is a button.

In addition to sending the form data, the web browser sends the x,y coordinate of where the user clicked. If the image input is not given a name then the browser sends the x and y coordinates as the "x" and "y" input fields.

If the input image does have a name, the x and y coordinates are sent using the format name.x and name.y. For example, when you click on the submit image in this form, the coordinates are sent as MySubmitImage.x and MySubmitImage.y. This feature can be used to check which image was clicked. For example, suppose you want to have an image for "Yes" and another for "No". If you name them "Yes" and "No" you can check if they clicked "Yes" by checking for the existence of the "Yes.x" field in the data that is sent. Try these buttons:

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

<INPUT

 TYPE=IMAGE

 SRC="../graphics/yes.gif"

 HEIGHT=38 WIDTH=62

 ALT="Yes" BORDER=0

 NAME="Yes"
 >

<INPUT

 TYPE=IMAGE

 SRC="../graphics/no.gif"

 HEIGHT=38 WIDTH=61

 ALT="No" BORDER=0

 NAME="No"
 >

</FORM>
	Top of Form

[image: image68.wmf]

 HTMLCONTROL Forms.HTML:Image.1 [image: image69.wmf]
Bottom of Form

Attribute for <INPUT ...>
NAME
NAME assigns a name to the input field, and is required in most circumstances. In forms which use CGI, the name of the input field is sent to the CGI:

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

favorite color: <INPUT NAME="favecolor">

<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>
	Top of Form

favorite color: [image: image70.wmf]

[image: image71.wmf]s

ubmit

Bottom of Form

For radio buttons and submit buttons you can use the same name in more than one input to indicate different options. Notice in these examples that the names are the same but the values for each option change:

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

What size pizza?<P>

<INPUT TYPE=RADIO NAME="pizzasize" VALUE="S">small

<INPUT TYPE=RADIO NAME="pizzasize" VALUE="M">medium

<INPUT TYPE=RADIO NAME="pizzasize" VALUE="L">large<P>

<INPUT TYPE=SUBMIT VALUE="submit">

</FORM>
	Top of Form

What size pizza?

[image: image72.wmf]small
[image: image73.wmf]medium
[image: image74.wmf]large

[image: image75.wmf]s

ubmit

Bottom of Form

	<FORM ACTION="../cgi-bin/mycgi.pl">

Go to the check-out page?

<INPUT TYPE=SUBMIT NAME="checkout" VALUE="YES">

<INPUT TYPE=SUBMIT NAME="checkout" VALUE="NO">

</FORM>
	Top of Form

Go to the check-out page? [image: image76.wmf]YE

S

 HTMLCONTROL Forms.HTML:Submitbutton.1 [image: image77.wmf]NO

Bottom of Form

Forms that use scripting also use NAME. The input object is in the elements collection of the form object, and can be referred to by its name using dot notation. In this example, we use the this.form.email to refer to the email input field. This code requests an email address. If none is given, the form is not submitted.

<FORM

 ACTION="../cgi-bin/mycgi.pl"

 onSubmit="return (this.email.value != '')"

 >

email: <INPUT NAME="email">

<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>

which gives us

Top of Form

email: [image: image78.wmf]

[image: image79.wmf]s

ubmit

Bottom of Form

Attribute for <INPUT ...>
VALUE
VALUE sets the value for the input field. VALUE sets the default values for text and password fields, sets the button text in submit, reset and plain buttons, sets the values of the choices in radio buttons, sets the permanent values of hidden fields, and has no effect on file, and image fields.

text and password fields

For these types of fields, VALUE sets the default value:

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

name: <INPUT TYPE=TEXT NAME="realname" VALUE="wisnesky">

password: <INPUT TYPE=PASSWORD NAME="realname" VALUE="pacman">

<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>
	Top of Form

name: [image: image80.wmf]

wisnesky

password: [image: image81.wmf]

[image: image82.wmf]s

ubmit

Bottom of Form

It's a bad idea to send a default password, because the password can be obtained by looking at the HTML code.

radio buttons

use different values among several inputs with the same NAME to indicate different options:

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

<INPUT TYPE=RADIO NAME="color" VALUE="red" >Red

<INPUT TYPE=RADIO NAME="color" VALUE="green" >Green

<INPUT TYPE=RADIO NAME="color" VALUE="blue" >Blue

<INPUT TYPE=RADIO NAME="color" VALUE="purple" >Purple

<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>
	Top of Form

[image: image83.wmf]Red
[image: image84.wmf]Green
[image: image85.wmf]Blue
[image: image86.wmf]Purple

[image: image87.wmf]s

ubmit

Bottom of Form

submit, reset, and plain buttons

The text in these types of buttons is set using VALUE.

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

<INPUT TYPE=BUTTON VALUE="My Plain Button" ><P>

<INPUT TYPE=RESET VALUE="My Reset Button" ><P>

<INPUT TYPE=SUBMIT VALUE="My Submit Button" >

</FORM>
	Top of Form

[image: image88.wmf]My

R

eset Button

[image: image89.wmf]My

S

ubmit Button

Bottom of Form

If you can use the NAME attribute with submit buttons to make them act similar to radio buttons:

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

Go to the check-out page?

<INPUT TYPE=SUBMIT NAME="checkout" VALUE="YES">

<INPUT TYPE=SUBMIT NAME="checkout" VALUE="NO">

</FORM>
	Top of Form

Go to the check-out page?
[image: image90.wmf]YE

S

 HTMLCONTROL Forms.HTML:Submitbutton.1 [image: image91.wmf]NO

Bottom of Form

See RADIO for more details.

checkboxes

VALUE does not effect the checked state of checkboxes. If you want a checkbox to default to on, use CHECKED. Instead, VALUE sets the value that is sent to the server if the user checks that checkbox. For example, if you wanted the checkbox to send yessireebob you could set the checkbox like this:

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

<INPUT TYPE=CHECKBOX NAME="join" VALUE="yessireebob">

yes, sign me up!

<P><INPUT TYPE=SUBMIT VALUE="join">

</FORM>
	Top of Form

[image: image92.wmf]yes, sign me up!

[image: image93.wmf]join

Bottom of Form

If the checkbox is not checked, no value of any kind is sent to the server. By default, checkboxes send on.

hidden fields

Hidden fields have no purpose unless they have a value (they also need a name).

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

<INPUT TYPE=HIDDEN NAME="threadID" VALUE="1295">

<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>
	Top of Form

[image: image94.wmf]

1295

[image: image95.wmf]s

ubmit

Bottom of Form

Attribute for <INPUT ...>
SIZE = integer
SIZE sets how wide a text or password field should be. It has no effect on any other type of field.

<FORM ACTION="../cgi-bin/mycgi.pl">

age: <INPUT TYPE=TEXT NAME="age" SIZE=2 >

first name: <INPUT TYPE=TEXT NAME="first" SIZE=10>

last name: <INPUT TYPE=TEXT NAME="last" SIZE=30>

cosmic plane of origin:
 <INPUT TYPE=TEXT NAME="plane" SIZE=70>

<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>

gives us these fields of various length:

Top of Form

age: [image: image96.wmf]

first name: [image: image97.wmf]

last name: [image: image98.wmf]

cosmic plane of origin:
[image: image99.wmf]

[image: image100.wmf]s

ubmit

Bottom of Form

SIZE does not set the maximum length of what can be typed in. Use MAXLENGTH for that. Avoid setting SIZE to a length of 1. Although 1 is technically a valid size, many browsers have a hard time rendering a field that short. Try a size of 2.

Attribute for <INPUT ...>
MAXLENGTH = integer
MAXLENGTH sets the maximum number of characters for text or password fields.

<FORM ACTION="../cgi-bin/mycgi.pl">

account ID: <INPUT TYPE=TEXT NAME="accountID" MAXLENGTH=4>

password: <INPUT TYPE=PASSWORD NAME="password" MAXLENGTH=8>

<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>

gives us this form:

Top of Form

account ID: [image: image101.wmf]

password: [image: image102.wmf]

[image: image103.wmf]s

ubmit

Bottom of Form

CHECKED
CHECKED indicates that a radio button or checkbox should be on when the form first loads.

	this code
	produces this

	<FORM ACTION="../cgi-bin/mycgi.pl">

<INPUT TYPE=CHECKBOX NAME="maillist" CHECKED>Yes! Put me on the list!

<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>
	Top of Form

[image: image104.wmf]Yes! Put me on the list!

[image: image105.wmf]s

ubmit

Bottom of Form

	<FORM ACTION="../cgi-bin/mycgi.pl">

What color would you like?

<INPUT TYPE=RADIO NAME="color" VALUE="green" >Green

<INPUT TYPE=RADIO NAME="color" VALUE="red" >Red

<INPUT TYPE=RADIO NAME="color" VALUE="blue" CHECKED >Blue

<INPUT TYPE=RADIO NAME="color" VALUE="brown" >Brown

<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>
	Top of Form

What color would you like?
[image: image106.wmf]Green
[image: image107.wmf]Red
[image: image108.wmf]Blue
[image: image109.wmf]Brown

[image: image110.wmf]s

ubmit

Bottom of Form

Checkboxes are off by default. There is no default for which radio button is on when the form loads; most browsers have none on, some put the first one on.

Attribute for <INPUT ...>
BORDER = integer
BORDER is used for image submit buttons. BORDER indicates if there should be a visible border around the image. BORDER only has an effect in Netscape. MSIE does not put any visible border around image submits.

By default, Netscape puts a border around image submit buttons. By setting BORDER to zero you remove that border:

<FORM ACTION="../cgi-bin/mycgi.pl" METHOD=POST>

name: <INPUT NAME="realname">

<INPUT TYPE=IMAGE SRC="go2.gif"

 BORDER=0 HEIGHT=22 WIDTH=50 ALT="go!">

</FORM>

which gives us

Top of Form

name: [image: image111.wmf]

 HTMLCONTROL Forms.HTML:Image.1 [image: image112.wmf]
Bottom of Form

Attributes for <INPUT ...>
SRC = "image URL"
HEIGHT
WIDTH
ALT
HSPACE = integer
VSPACE = integer
ALIGN = LEFT | RIGHT | TOP | TEXTTOP | MIDDLE | ABSMIDDLE | CENTER | BOTTOM | ABSBOTTOM | BASELINE
LOWSRC = "URL"
When you use the image type of input, you can use many of the same attributes as with , including:

· SRC: the URL of the image

· ALT: alternate text for those who do not display/see the picture. Netscape still does not support this attribute for <INPUT ...>, and MSIE only started doing so with the 4.0 release.

· LOWSRC: the small bandwidth image to load before the main big image. If your submit buttons are so big you need this attribute, they are probably too big.

· WIDTH and HEIGHT: dimensions of the image.

· ALIGN: how surrounding text is aligned to the image (actually, the input image should generally be on its own line. Remember that the image is really a submit button, so it probably needs to stand out like a submit button).

· VSPACE and HSPACE: how far surrounding text should be from the image.

· BORDER: size of the border around the image. (see <INPUT BORDER="...">)

Attributes for <INPUT ...>
DISABLED
READONLY
READONLY and DISABLED both remove the functionality of the input field, but to different degrees. READONLY locks the field: the user cannot change the value. DISABLED does the same thing but takes it further: the user cannot use the field in any way, not to highlight the text for copying, not to select the checkbox, not to submit the form. In fact, a disabled field is not even sent if the form is submitted.

Currently only MSIE recognizes either of these attributes.

	this code
	produces this

	<INPUT NAME="realname" VALUE="Hi There" READONLY>
	Top of Form 1

[image: image113.wmf]

Hi There

HTMLCONTROL Forms.HTML:Text.1 * MERGEFORMAT \s[image: image114.wmf]

GO

Bottom of Form 1

	<INPUT NAME="realname" VALUE="Hi There" DISABLED>
	Top of Form 2

[image: image115.wmf]

Hi There

HTMLCONTROL Forms.HTML:Text.1 * MERGEFORMAT \s[image: image116.wmf]

GO

Bottom of Form 2

It's important to understand that READONLY merely prevents the user from changing the value of the field, not from interacting with the field. For many types of fields, READONLY is irrelevent because you don't normally change the value. In checkboxes, for example, you can check them on or off (thus setting the CHECKED state) but you don't change the value of the field. DISABLED, however, actually prevents you from using the field. Notice in these examples that you can set the checkboxes even though they are "read only":

Top of Form 3

	this code
	produces this

	<INPUT NAME="mushrooms" TYPE=CHECKBOX READONLY>mushrooms

<INPUT NAME="onions" TYPE=CHECKBOX READONLY>onions

<INPUT NAME="peppers" TYPE=CHECKBOX READONLY>peppers
	[image: image117.wmf]

mushrooms
[image: image118.wmf]

onions
[image: image119.wmf]

peppers

	<INPUT NAME="mushrooms" TYPE=CHECKBOX DISABLED>mushrooms

<INPUT NAME="onions" TYPE=CHECKBOX DISABLED>onions

<INPUT NAME="peppers" TYPE=CHECKBOX DISABLED>peppers
	[image: image120.wmf]

mushrooms
[image: image121.wmf]

onions
[image: image122.wmf]

peppers

Attribute for <INPUT ...>
ACCESSKEY = "text string"
ACCESSKEY specifies a shortcut key to go directly to the input field. The key is pressed along with the ALT key. For button style fields, using the key is like pressing the button. So, in the form produced with this code:

<INPUT TYPE=SUBMIT

 ACCESSKEY="g"
 VALUE="Go!"

 >

You can submit the form by hitting ALT-g:

Top of Form

[image: image123.wmf]Go!

Bottom of Form

For text entry fields, the key takes the cursor to that field. So with this code:

color: <INPUT TYPE=INPUT

 NAME="color"

 ACCESSKEY="c"
 >

ALT-c takes you to the input field:

Top of Form

color:

Attribute for <INPUT ...>
TABINDEX = integer
	Usage Recommendation

	use it, but don't rely on it

Please note: TABINDEX is supported by MSIE 4.x and higher and Netscape 6.

Normally, when the user tabs from field to field in a form (in a browser that allows tabbing, not all browsers do) the order is the order the fields appear in the HTML code.

However, sometimes you want the tab order to flow a little differently. In that case, you can number the fields using TABINDEX. The tabs then flow in order from lowest TABINDEX to highest.

This code:

<FORM ACTION="../cgi-bin/mycgi.pl" METHOD=POST>

<TABLE BORDER CELLPADDING=3 CELLSPACING=5 BGCOLOR="#FFFFCC">

<TR>

 <TD>name: <INPUT NAME="realname" TABINDEX=1></TD>

 <TD ROWSPAN=3>comments

 <TEXTAREA COLS=25 ROWS=5 TABINDEX=4></TEXTAREA></TD></TR>

<TR> <TD>email: <INPUT NAME="email" TABINDEX=2></TD></TR>

<TR> <TD>department: <SELECT NAME="dep" TABINDEX=3>

 <OPTION VALUE="">...

 <OPTION VALUE="mkt">Marketing

 <OPTION VALUE="fin">Finance

 <OPTION VALUE="dev">Development

 <OPTION VALUE="prd">Production</SELECT></TD></TR>

</TABLE>

</FORM>

produces this form:

	name: [image: image124.wmf]

	comments
[image: image125.wmf]

	email: [image: image126.wmf]

	

	department: [image: image127.wmf]

...

	

TABINDEX can also be used with <A ...>, <TEXTAREA ...>, <SELECT ...>, and <BUTTON ...>.

<TEXTAREA ...>
	Usage Recommendation

	use it if you use Forms

	· NAME: name of this form field

· COLS: how many characters wide

· ROWS: how many rows

· WRAP: how to wrap the text

· READONLY: don't let the user change the contents of the field
	
	· DISABLED: don't let the user do anything with this field

· TABINDEX: tab order

· LANGUAGE: scripting language

· onChange: Script to run when the user has changed the textarea

· onKeyPress: script to run when a key is pressed

<TEXTAREA ...> indicates a form field where the user can enter large amounts of text. In most respects, <TEXTAREA ...> works like an <INPUT ...> field. It can have a name, a default value, script events such as onChange, and is sent to a CGI as a name/value pair. One main difference is that <TEXTAREA ...> is a container tag: it has a start tag ().

In its simplest form, <TEXTAREA ...> requires the NAME, COLS and ROWS attributes, and nothing between <TEXTAREA ...> and </TEXTAREA>.

<FORM ACTION="../cgi-bin/mycgi.pl" METHOD=POST>

your comments:

<TEXTAREA NAME="comments" COLS=40 ROWS=6></TEXTAREA>
<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>

gives us this form:

Top of Form

your comments:
[image: image128.wmf]

[image: image129.wmf]s

ubmit

Bottom of Form

The contents between <TEXTAREA ...> and </TEXTAREA> are used as the default value.

<FORM ACTION="../cgi-bin/mycgi.pl">

your response:

<TEXTAREA NAME="comments" COLS=40 ROWS=6>
John said

: I think it's a great idea

: but it needs more thought

</TEXTAREA>
<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>

gives us

Top of Form

your response:
[image: image130.wmf]

John said

: I think it's a great idea

: but it needs more thought

[image: image131.wmf]s

ubmit

Bottom of Form

The contents are interpreted as text only; HTML markup is ignored. Theoretically the user can type unlimited amounts of text into the textarea field. In reality the browser sets the limit, usually no more than 32 K. If you want users to send in their latest novel, consider using file upload.

Attribute for <TEXTAREA ...>
NAME = "text string"
NAME sets the name of the field for use in the CGI and for scripting. This attribute works just like <INPUT NAME="...">.

Attributes for <TEXTAREA ...>
COLS
ROWS
	Usage Recommendation

	[image: image132.png]

use it

COLS indicates how many characters (not pixels) wide the text area should be. ROWS indicates how many rows should be in the text area. Both attributes are required in the <TEXTAREA ...> tag. These attributes do not set any limit on how much can be typed in, just how much of the textarea is visible.

Here's a comparison between some small and large values of these attributes:

Top of Form

<TEXTAREA NAME="few" COLS=10 ROWS=2></TEXTAREA>

Bottom of Form

Attribute for <TEXTAREA ...>
WRAP = SOFT | HARD | OFF
	Usage Recommendation

	use it, but don't rely on it

WRAP describes how the text in the text area should wrap at the end of lines. Until this attribute came along, browsers generally did not do word wrapping. If you typed a line that was longer than the display area, the line just kept going, hopefully with the display area scrolling along. This was not the way people are used to entering text, so Netscape added the WRAP attribute.

SOFT wraps long lines in the text area for easy editing, much like a word processor. It does not, however, send the carriage returns to the server. This type of wrap is probably the most useful because it is the easiest for the user to edit, but it does not actually change any of their data. HARD looks to the user like SOFT, but the carriage returns the user sees are sent to the server. OFF does not wrap at all; it displays and sends the text exactly as typed in.

Top of Form

	this code
	produces this

	<TEXTAREA NAME="SOFT" COLS=25 ROWS=5 WRAP=SOFT>
	[image: image133.wmf]

The quality of mercy is not

	<TEXTAREA NAME="HARD" COLS=25 ROWS=5 WRAP=HARD>
	[image: image134.wmf]

The quality of mercy is not

	<TEXTAREA NAME="OFF" COLS=25 ROWS=5 WRAP=OFF>
	[image: image135.wmf]

The quality of mercy is not

	Default behaviour differs between browsers

<TEXTAREA NAME="NONE" COLS=25 ROWS=5>
	[image: image136.wmf]

The quality of mercy is not

	
	[image: image137.wmf]S

ubmit

Bottom of Form

You may from time to time see other variations on WRAP, such as VIRTUAL or PHYSICAL. Netscape introduced these attributes a few years ago as proposed extensions to HTML 3.0, then abandoned them. Officially, the HTML 4.0 specs don't list WRAP, but Netscape and MSIE list WRAP = HARD | SOFT | OFF in their guides. It's best to stick these three values.

<SELECT ...>
	Usage Recommendation

	[image: image138.png]

use it

	· NAME: name of this form element

· MULTIPLE: allow more than one choice

· SIZE: how many options to show

· READONLY: don't let the user change the value of this field

· DISABLED: don't let the user do anything with this field
	
	· LANGUAGE: scripting language to use

· onChange: what to do when a new option is selected

· TABINDEX: tab order

· onFocus: script to run when this field gets the focus

· onBlur: script to run when this field loses the focus

A lot of people come to this page looking for information on drop down menues. You may want to see the Drop Down Menu Tutorial.

<SELECT ...> creates a list of options, one or more of which can be selected. In its simplest use, it consists of <SELECT ...>, two or more <OPTION ...> tags, and </SELECT>.

	this code
	produces this

	<SELECT NAME="pizzasize">

<OPTION VALUE="s">small

<OPTION VALUE="m">medium

<OPTION VALUE="l">large

</SELECT>
	Top of Form

[image: image139.wmf]

small

 HTMLCONTROL Forms.HTML:Submitbutton.1 [image: image140.wmf]s

ubmit

Bottom of Form

Note that the text which appears is directly after each <OPTION ...> tag, not inside the tag. The value that is sent to the CGI, however, is given by <OPTION VALUE="...">.

By default only one option can be selected. To have a list which allows more than one option, use the MULTIPLE attribute. See MULTIPLE for more details about this type of list.
Attribute for <SELECT ...>
NAME
NAME names the select field for use with CGIs and with scripting. NAME works just like <INPUT NAME="...">.

Attribute for <SELECT ...>
MULTIPLE
MULTIPLE designates that more than one option in the list can be selected. When creating a multiple list it is almost always a good idea to also use the SIZE attribute.

	this code
	produces this

	<SELECT NAME="toppings" MULTIPLE SIZE=5>

<OPTION VALUE="mushrooms">mushrooms

<OPTION VALUE="greenpeppers">green peppers

<OPTION VALUE="onions">onions

<OPTION VALUE="tomatoes">tomatoes

<OPTION VALUE="olives">olives

</SELECT>
	Top of Form

[image: image141.wmf]

mushrooms

green peppers

onions

tomatoes

olives

[image: image142.wmf]s

ubmit

Bottom of Form

How you go about selecting the options you want depends on the browser, but for most browsers you hold down the CONTROL key while you click on the options you want. Unfortunately this is confusing for many users. For shorter selection lists, it is much more intuitive to use checkboxes. Consider if this list of checkboxes is clearer than the multiple selection list above:

	this code
	produces this

	<INPUT TYPE=CHECKBOX NAME="mushrooms">mushrooms

<INPUT TYPE=CHECKBOX NAME="greenpeppers">green peppers

<INPUT TYPE=CHECKBOX NAME="onions">onions

<INPUT TYPE=CHECKBOX NAME="tomatoes">tomatoes

<INPUT TYPE=CHECKBOX NAME="olives">olives
	Top of Form

[image: image143.wmf]mushrooms
[image: image144.wmf]green peppers
[image: image145.wmf]onions
[image: image146.wmf]tomatoes
[image: image147.wmf]olives

[image: image148.wmf]s

ubmit

Bottom of Form

Attribute for <SELECT ...>
SIZE = integer
SIZE indicates how many rows of the list should be displayed. The default is one. So, for example, the following code creates a select list with 6 rows:

	this code
	produces this

	<SELECT NAME="county" SIZE=6>
	Top of Form

[image: image149.wmf]

Montgomery

Spotsylvania

Cooper

Midland

Blacksburg

Cantonsville

Bottom of Form

<OPTION ...>
	Usage Recommendation

	use it if you use <SELECT ...>

	· VALUE: what's the value if this option is chosen
	
	· SELECTED: this option is selected by default

<OPTION ...> is used along with <SELECT ...> to create select lists. <OPTION ...> indicates the start of a new option in the list. <OPTION ...> can be used without any attributes, but you usually need the VALUE attribute, which indicates what is sent to the server. The text which follows <OPTION ...> is what is displayed in the browser:

	this code
	produces this select list

	<SELECT NAME="partnumber">

<OPTION VALUE="7382">steam turbine

<OPTION VALUE="2928">resistor array

<OPTION VALUE="3993">widget analyzer

<OPTION VALUE="9398">fiber identifier

</SELECT>
	Top of Form

[image: image150.wmf]

steam turbine

[image: image151.wmf]s

ubmit

Bottom of Form

Note that the text which appears in the list is never sent to the server.

Attribute for <OPTION ...>
VALUE
VALUE indicates the value that is sent to the server if that option is chosen. The value of VALUE is not seen by the user.

	this code
	produces this select list

	<SELECT NAME="partnumber">

<OPTION VALUE="7382">steam turbine

<OPTION VALUE="2928">resistor array

<OPTION VALUE="3993">widget analyzer

<OPTION VALUE="9398">fiber identifier

</SELECT>
	Top of Form

[image: image152.wmf]

steam turbine

[image: image153.wmf]s

ubmit

Bottom of Form

In this example, if you selected the first option, "steam turbine", then the name/value pair

partnumber=7382

is sent to the CGI.

Attribute for <OPTION ...>
SELECTED
SELECTED indicates that the option should be selected by default. For example, in this example, the third item ("widget analyzer") is the default item:

	this code
	produces this select list

	<SELECT NAME="partnumber">

<OPTION VALUE="7382" >steam turbine

<OPTION VALUE="2928" >resistor array

<OPTION VALUE="3993" SELECTED >widget analyzer

<OPTION VALUE="9398" >fiber identifier

</SELECT>
	Top of Form

[image: image154.wmf]

widget analyzer

[image: image155.wmf]s

ubmit

Bottom of Form

SELECTED can also be used in multiple select lists. In this example, the "green team" and the "purple team" are the default selected items:

	this code
	produces this select list

	<SELECT NAME="teams" MULTIPLE SIZE=6>

<OPTION VALUE="b" >blue team

<OPTION VALUE="g" SELECTED >green team

<OPTION VALUE="r" >red team

<OPTION VALUE="p" SELECTED >purple team

<OPTION VALUE="f" >fuschia team

<OPTION VALUE="m" >mango team

</SELECT>
	Top of Form

[image: image156.wmf]

blue team

green team

red team

purple team

fuschia team

mango team

[image: image157.wmf]s

ubmit

Bottom of Form

<BUTTON ...>
	Usage Recommendation

	use <INPUT ...> instead

	· TYPE: what type of button is this

· onClick: script to run when the user clicks here

· NAME: name of this button element

· VALUE: the value sent with the form
	
	· DISABLED: disable this button

· ACCESSKEY: shortcut key for this button

· TABINDEX: tab order

<BUTTON ...> creates a button. Unlike <INPUT ...>, <BUTTON ...> is a container which allows you to put regular HTML contents in the button, including text and pictures. Unfortunately, <BUTTON ...> does not degrade well, and so at this time it's best to stick with <INPUT ...>.

	this code
	produces this

	<BUTTON TYPE=SUBMIT>

Send It In!

</BUTTON>
	Top of Form

[image: image158.png]

Send It In!

Bottom of Form

By default, <BUTTON ...> creates a plain button, much like <INPUT TYPE=BUTTON>. With the TYPE attribute, <BUTTON ...> can also create submit and reset buttons. The HTML code put between <BUTTON ...> and </BUTTON> is not the value sent with the form. The value of the button determined by the <INPUT VALUE="..."> attribute.

Attribute for <BUTTON ...>
TYPE = BUTTON | SUBMIT | RESET
TYPE indicates that the button is one of three types:

· BUTTON (the default) creates a button in the same way <INPUT TYPE=BUTTON> does. A button of this type requires a script for it to do anything.

· SUBMIT creates a submit button like <INPUT TYPE=SUBMIT>

· RESET creates a submit button like <INPUT TYPE=RESET>

This code:

<FORM ACTION="../cgi-bin/mycgi.pl" NAME="application">

application date: <INPUT TYPE=TEXT NAME="appdate" SIZE=10>

<BUTTON

 TYPE=BUTTON

 onClick="document.application.appdate.value=today()"><I>today</I></BUTTON><P>

<BUTTON TYPE=RESET>Reset Form</BUTTON>

<BUTTON TYPE=SUBMIT>Send It!</BUTTON>

</FORM>

gives us this form (you can also see the today() script in this page): [image: image159.png]

Top of Form

application date: [image: image160.wmf]

today

Reset FormSend It!

Bottom of Form

Attribute for <BUTTON ...>
NAME = "text string"
NAME sets the name of the button element. If the button is a submit button then the name and the value should be sent to the server. Unfortunately MSIE did not properly implement this feature so NAME is of limited value.

NAME can also be used in scripts. The button can be refered to by using its name as a property of the form. For example, the following code creates a button named go that has blinking text:

<FORM ACTION="../cgi-bin/mycgi.pl"

 METHOD=POST

 NAME="myform">

email: <INPUT NAME="email">

<BUTTON NAME="go" TYPE="submit">Go!</BUTTON>

</FORM>

<SCRIPT TYPE="text/javascript">

<!--

function blinker()

{

if (document.forms.myform.go.style.color == 'blue')

 document.forms.myform.go.style.color='red';

else

 document.forms.myform.go.style.color='blue';

setTimeout('blinker()',500);

}

blinker()

//-->

</SCRIPT>

which gives us

Top of Form

email: [image: image161.wmf]

Go!

Bottom of Form

[image: image162.png]

Attribute for <BUTTON ...>
VALUE = "text string"
	Usage Recommendation

	don't use it [image: image163.png]

At this point it's unclear what use this attribute has. The official HTML specifications indicate that the value of VALUE should be sent to the server when the form is submitted. However, MSIE does not send VALUE when the button is a submit button. At this point it's best to ignore this attribute

<FIELDSET>
<FIELDSET> defines a group of form elements as being logically related. The browser draws a box around the set of fields to indicate that they are related.For example, a form might contain a few fields about name and email, some fields asking for opinions, and a field for "other comments". <FIELDSET> could be used to group those fields like this:

<FIELDSET>
name: <INPUT NAME="realname">

email: <INPUT NAME="email">

</FIELDSET><P>

<FIELDSET>
favorite color: <INPUT NAME="favecolor">

<INPUT TYPE=CHECKBOX NAME="onions"> like green onions

<INPUT TYPE=CHECKBOX NAME="cookies"> like cookies

<INPUT TYPE=CHECKBOX NAME="kimchee"> like kim chee

</FIELDSET><P>

<FIELDSET>
other comments:

<TEXTAREA NAME="comments" ROWS=5 COLS=25></TEXTAREA>

</FIELDSET>
which gives us this form:

Top of Form

_1431767501.unknown

_1431767533.unknown

_1431767549.unknown

_1431767557.unknown

_1431767561.unknown

_1431767563.unknown

_1431767564.unknown

_1431767562.unknown

_1431767559.unknown

_1431767560.unknown

_1431767558.unknown

_1431767553.unknown

_1431767555.unknown

_1431767556.unknown

_1431767554.unknown

_1431767551.unknown

_1431767552.unknown

_1431767550.unknown

_1431767541.unknown

_1431767545.unknown

_1431767547.unknown

_1431767548.unknown

_1431767546.unknown

_1431767543.unknown

_1431767544.unknown

_1431767542.unknown

_1431767537.unknown

_1431767539.unknown

_1431767540.unknown

_1431767538.unknown

_1431767535.unknown

_1431767536.unknown

_1431767534.unknown

_1431767517.unknown

_1431767525.unknown

_1431767529.unknown

_1431767531.unknown

_1431767532.unknown

_1431767530.unknown

_1431767527.unknown

_1431767528.unknown

_1431767526.unknown

_1431767521.unknown

_1431767523.unknown

_1431767524.unknown

_1431767522.unknown

_1431767519.unknown

_1431767520.unknown

_1431767518.unknown

_1431767509.unknown

_1431767513.unknown

_1431767515.unknown

_1431767516.unknown

_1431767514.unknown

_1431767511.unknown

_1431767512.unknown

_1431767510.unknown

_1431767505.unknown

_1431767507.unknown

_1431767508.unknown

_1431767506.unknown

_1431767503.unknown

_1431767504.unknown

_1431767502.unknown

_1431767469.unknown

_1431767485.unknown

_1431767493.unknown

_1431767497.unknown

_1431767499.unknown

_1431767500.unknown

_1431767498.unknown

_1431767495.unknown

_1431767496.unknown

_1431767494.unknown

_1431767489.unknown

_1431767491.unknown

_1431767492.unknown

_1431767490.unknown

_1431767487.unknown

_1431767488.unknown

_1431767486.unknown

_1431767477.unknown

_1431767481.unknown

_1431767483.unknown

_1431767484.unknown

_1431767482.unknown

_1431767479.unknown

_1431767480.unknown

_1431767478.unknown

_1431767473.unknown

_1431767475.unknown

_1431767476.unknown

_1431767474.unknown

_1431767471.unknown

_1431767472.unknown

_1431767470.unknown

_1431767452.unknown

_1431767460.unknown

_1431767464.unknown

_1431767466.unknown

_1431767467.unknown

_1431767465.unknown

_1431767462.unknown

_1431767463.unknown

_1431767461.unknown

_1431767456.unknown

_1431767458.unknown

_1431767459.unknown

_1431767457.unknown

_1431767454.unknown

_1431767455.unknown

_1431767453.unknown

_1431767436.unknown

_1431767444.unknown

_1431767448.unknown

_1431767450.unknown

_1431767451.unknown

_1431767449.unknown

_1431767446.unknown

_1431767447.unknown

_1431767445.unknown

_1431767440.unknown

_1431767442.unknown

_1431767443.unknown

_1431767441.unknown

_1431767438.unknown

_1431767439.unknown

_1431767437.unknown

_1431767428.unknown

_1431767432.unknown

_1431767434.unknown

_1431767435.unknown

_1431767433.unknown

_1431767430.unknown

_1431767431.unknown

_1431767429.unknown

_1431767420.unknown

_1431767424.unknown

_1431767426.unknown

_1431767427.unknown

_1431767425.unknown

_1431767422.unknown

_1431767423.unknown

_1431767421.unknown

_1431767416.unknown

_1431767418.unknown

_1431767419.unknown

_1431767417.unknown

_1431767414.unknown

_1431767415.unknown

_1431767412.unknown

_1431767413.unknown

_1431767410.unknown

_1431767411.unknown

_1431767409.unknown

